- 相關(guān)推薦
八年級數(shù)學教案:全等三角形的判定
作為一位兢兢業(yè)業(yè)的人民教師,可能需要進行教案編寫工作,通過教案準備可以更好地根據(jù)具體情況對教學進程做適當?shù)谋匾恼{(diào)整。教案要怎么寫呢?以下是小編幫大家整理的八年級數(shù)學教案:全等三角形的判定,僅供參考,大家一起來看看吧。
八年級數(shù)學教案:全等三角形的判定1
教學目標:
1、知識目標:
(1)掌握已知三邊畫三角形的方法;
(2)掌握邊邊邊公理,能用邊邊邊公理證明兩個三角形全等;
(3)會添加較明顯的輔助線.
2、能力目標:
(1)通過尺規(guī)作圖使學生得到技能的訓練;
(2)通過公理的初步應(yīng)用,初步培養(yǎng)學生的邏輯推理能力.
3、情感目標:
(1)在公理的形成過程中滲透:實驗、觀察、歸納;
(2)通過變式訓練,培養(yǎng)學生“舉一反三”的學習習慣.
教學重點:SSS公理、靈活地應(yīng)用學過的各種判定方法判定三角形全等。
教學難點:如何根據(jù)題目條件和求證的結(jié)論,靈活地選擇四種判定方法中最適當?shù)姆椒ㄅ卸▋蓚三角形全等。
教學用具:直尺,微機
教學方法:自學輔導
教學過程:
1、新課引入
投影顯示
問題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對窗框測量哪幾個數(shù)據(jù)?如果你手頭沒有測量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?
這個問題讓學生議論后回答,他們的答案或許只是一種感覺。于是教師要引導學生,抓住問題的本質(zhì):三角形的三個元素――三條邊。
2、公理的獲得
問:通過上面問題的分析,滿足什么條件的兩個三角形全等?
讓學生粗略地概括出邊邊邊的公理。然后和學生一起畫圖做實驗,根據(jù)三角形全等定義對公理進行驗證。(這里用尺規(guī)畫圖法)
公理:有三邊對應(yīng)相等的兩個三角形全等。
應(yīng)用格式: (略)
強調(diào)說明:
(1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結(jié)論。
(2)、在應(yīng)用時,怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時圖形中隱含的(如公共邊)
(3)、此公理與前面學過的`公理區(qū)別與聯(lián)系
(4)、三角形的穩(wěn)定性:演示三角形的穩(wěn)定性與四邊形的不穩(wěn)定性。在演示中,其實可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結(jié)“三角形全等需要有3全獨立的條件”做好了準備,進行了溝通。
(5)說明AAA與SSA不能判定三角形全等。
3、公理的應(yīng)用
(1) 講解例1。學生分析完成,教師注重完成后的點評。
例1 如圖△ABC是一個鋼架,AB=ACAD是連接點A與BC中點D的支架
求證:AD⊥BC
分析:(設(shè)問程序)
(1)要證AD⊥BC只要證什么?
(2)要證∠1= 只要證什么?
(3)要證∠1=∠2只要證什么?
(4)△ABD和△ACD全等的條件具備嗎?依據(jù)是什么?
證明:(略)
(2)講解例2(投影例2 )
例2已知:如圖AB=DC,AD=BC
求證:∠A=∠C
(1)學生思考、分析、討論,教師巡視,適當參與討論。
(2)找學生代表口述證明思路。
思路1:連接BD(如圖)
證△ABD≌△CDB(SSS)先得∠A=∠C
思路2:連接AC證△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD
(3)教師共同討論后,說明思路1較優(yōu),讓學生用思路1在練習本上寫出證明,一名學生板書,教師強調(diào)解題格式:在“證明”二字的后面,先將所作的輔助線寫出,再證明。
例3如圖,已知AB=AC,DB=DC
(1)若E、F、G、H分別是各邊的中點,求證:EH=FG
(2)若AD、BC連接交于點P,問AD、BC有何關(guān)系?證明你的結(jié)論。
學生思考、分析,適當點撥,找學生代表口述證明思路
讓學生在練習本上寫出證明,然后選擇投影顯示。
證明:(略)
說明:證直線垂直可證兩直線夾角等于 ,而由兩鄰補角相等證兩直線的夾角等于 ,又是很重要的一種方法。
例4 如圖,已知:△ABC中,BC=2AB,AD、AE分別是△ABC、△ABD的中線,
求證:AC=2AE.
證明:(略)
學生口述證明思路,教師強調(diào)說明:“中線”條件下的常規(guī)作輔助線法。
5、課堂小結(jié):
(1)判定三角形全等的方法:3個公理1個推論(SAS、ASA、AAS、SSS)
在這些方法中,每一個都需要3個條件,3個條件中都至少包含條邊。
(2)三種方法的綜合運用
讓學生自由表述,其它學生補充,自己將知識系統(tǒng)化,以自己的方式進行建構(gòu)。
6、布置作業(yè):
a、書面作業(yè)P70#11、12
b、上交作業(yè)P70#14 P71B組3
八年級數(shù)學教案:全等三角形的判定2
【教學目標】:
1、幫助學生總結(jié)一般三角形全等的判定條件,使他們自覺運用各種全等判定法進行說理;
2、通過一般三角形全等判定條件的歸納,幫助學生認識事物間存在著的因果關(guān)系和制約的關(guān)系。
【重點難點】:
1、重點:讓學生識別三角的哪些元素能用來確定三角形的形狀與大小,因而可用來判定三角形全等。
2、難點:靈活應(yīng)用各種判定法識別全等三角形。
【教學準備】:
卡紙剪出的圖1、2中的六個三角形。
(圖1)(圖2)
【教學過程】:
一、復習
1、判定兩個三角形全等的條件有哪些?
。ㄓ蠸AS、ASA、AAS、SSS。HL)
2、一個三角形共有三條邊與三個角,你是否想到這樣一問題了:除了上述四種判定法,還有其他的三角形全等判定法嗎?比如說“SSA”、“AAA”能成為判定兩個三角形全等的條件嗎?
二、新授
1、演示
。1)演示圖1中的I、II三角形,它們間有兩邊及一對角對應(yīng)相等,這兩個三角形能完全重合,是全等形。但再取出III的三角形與I疊在一起后,發(fā)現(xiàn)它們不重合不是全等形,因此我們進一點證實了:有兩邊和其中一邊的對角對應(yīng)相等的兩個三角形不一定全等!癝SA”不是判定三角形全等的方法。
。2)演示圖2中的I、II三角形,它們間有三個角對應(yīng)相等,這兩個三角形能完全重合,是全等形,但再取出III的三角形與I疊在一起后,發(fā)現(xiàn)它們不重合,不是全等形。因此我們進一步證實了:三個角對應(yīng)相等的兩個三角形不一定全等“AAA”也不是判定三角形全等的方法。
2、填下表(掛出小黑板,讓學生思考、討論,共同填答)。
兩個三角形中對應(yīng)相等的元素兩個三角形是否全等依據(jù)的判定法反例
SSS√SSS
SAS√SAS
SSAX可舉反例
ASA√ASA
AAS√AAS
AAAX可舉反例
3、范例
例:如圖,,,點F是CD的中點,嗎?試說明理由。
教學要點:
。1)分析題目結(jié)論假定,可轉(zhuǎn)化為,需證它們所在的兩個三角形全等;
。2)觀察圖形,、中,并不在三角形中,為此添輔助線AC、AD;
。3)在△ACF與△ADF中,已知AF是公共邊,CF= FD,尚缺一條件,它只能是AC與AD相等;
。4)為證AC與AD相等。又要找它們分別在的△ACB與△ADE;
。5)△ACB與△ADE,由已知條件可由SAS證它們?nèi)龋?/p>
(6)書寫范例。
解:連結(jié)AC、AD,由已知AB=AE,,BC=DE
由SAS三角形全等判定法可知:
△ABC≌△AED
根據(jù)全等三角形的對應(yīng)相等可知
由,,(公共邊),根據(jù)SSS可知△ACF≌△ADF
根據(jù)全等三角形的對應(yīng)角相等可知
又由于F在直線CD上,可得,即。
你們可有其他方法嗎?
三、鞏固練習
1、如圖,在△ABC中,,,試說明△AED是等腰三角形。
2、如圖,AB∥CD,AD∥BC,與,與相等嗎?說明理由。
四、小結(jié)由學生對本節(jié)的學習過程進行總結(jié)。
五、作業(yè)
。ㄒ唬、填空題:
1、有一邊對應(yīng)相等的兩個三角形全等;
2、有一邊和對應(yīng)相等的兩個三角形全等;3、有兩邊和一角對應(yīng)相等的兩個三角形全等;
4、如圖,AB∥CD,AD∥BC,AC、BD相交于點O。
。1)由AD∥BC,可得=,由AB∥CD,可得=,又由,于是△ABD ≌△CDB;
。2)由,可得AD=CB,由,可得△AOD≌△COB;
(3)圖中全等三角形共有對。
(二)、選擇題:
1、若△ABC≌△BAD,A和B、C和D是對應(yīng)頂點,如果,,,則BC的.長是()
A、 B、 C、 D、無法確定
2、下列各說法中,正確的是()
A、有兩邊和一角對應(yīng)相等的兩個三角形全等;
B、有兩個角對應(yīng)相等且周長相等的兩個三角形全等;
C、兩個銳角對應(yīng)相等的兩個直角三角形全等;
D、有兩組邊相等且周長相等的兩個三角形全等。
(三)、解答題:
1 、如圖,,,AC、BD交于點,圖中共有幾對長度相等的線段,你是通過什么辦法找到的?
2、如圖,,,(1)等于多少度?
(2)圖中有哪幾組平行線?
(3)與的和是定值嗎?
【八年級數(shù)學教案:全等三角形的判定】相關(guān)文章:
三角形全等的判定說課稿11-19
三角形全等的判定教學反思03-17
《三角形全等的判定》教學反思04-29
直角三角形全等的判定教學反思03-28
數(shù)學全等三角形教案12-30
數(shù)學全等三角形教案03-20
全等三角形教學反思08-21
《三角形全等的復習》教學反思02-18
數(shù)學全等三角形教案10篇03-20