熟妇人妻中文字幕在线视频_无码人妻精品视频_久久躁夜夜躁狠狠躁_偷碰人妻无码视频

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>九年級(jí)數(shù)學(xué)教案>數(shù)學(xué)教案-圓的周長(zhǎng)、弧長(zhǎng)

數(shù)學(xué)教案-圓的周長(zhǎng)、弧長(zhǎng)

時(shí)間:2022-08-17 01:56:04 九年級(jí)數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

數(shù)學(xué)教案-圓的周長(zhǎng)、弧長(zhǎng)


圓周長(zhǎng)、弧長(zhǎng)(一)

數(shù)學(xué)教案-圓的周長(zhǎng)、弧長(zhǎng)

  教學(xué)目標(biāo)

  1、初步掌握?qǐng)A周長(zhǎng)、弧長(zhǎng)公式;

  2、通過(guò)弧長(zhǎng)公式的推導(dǎo),培養(yǎng)學(xué)生探究新問(wèn)題的能力;

  3、調(diào)動(dòng)學(xué)生的積極性,培養(yǎng)學(xué)生的鉆研精神;

  4、進(jìn)一步培養(yǎng)學(xué)生從實(shí)際問(wèn)題中抽象出數(shù)學(xué)模型的能力,綜合運(yùn)用所學(xué)知識(shí)分析問(wèn)題和解決問(wèn)題的能力.

  教學(xué)重點(diǎn)弧長(zhǎng)公式.

  教學(xué)難點(diǎn)正確理解弧長(zhǎng)公式.

  教學(xué)活動(dòng)設(shè)計(jì):

 

 。ㄒ唬⿵(fù)習(xí)(圓周長(zhǎng))

  已知⊙O半徑為R,⊙O的周長(zhǎng)C是多少?

C=2πR

  這里π=3.14159…,這個(gè)無(wú)限不循環(huán)的小數(shù)叫做圓周率.

  由于生產(chǎn)、生活實(shí)際中常遇到有關(guān)弧的長(zhǎng)度計(jì)算,那么怎樣求一段弧的長(zhǎng)度呢?

  提出新問(wèn)題:已知⊙O半徑為R,求n°圓心角所對(duì)弧長(zhǎng).

 。ǘ┨骄啃聠(wèn)題、歸納結(jié)論

  教師組織學(xué)生探討(因?yàn)閱?wèn)題并不難,學(xué)生完全可以自己研究得到公式).

  研究步驟:

 。1)圓周長(zhǎng)C=2πR;

  (2)1°圓心角所對(duì)弧長(zhǎng)= ;

 。3)n°圓心角所對(duì)的弧長(zhǎng)是1°圓心角所對(duì)的弧長(zhǎng)的n倍;

 。4)n°圓心角所對(duì)弧長(zhǎng)= .

  歸納結(jié)論:若設(shè)⊙O半徑為R, n°圓心角所對(duì)弧長(zhǎng)l,則

  (弧長(zhǎng)公式)

  (三)理解公式、區(qū)分概念

  教師引導(dǎo)學(xué)生理解:

  (1)在應(yīng)用弧長(zhǎng)公式 進(jìn)行計(jì)算時(shí),要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的;

 。2)公式可以理解記憶(即按照上面推導(dǎo)過(guò)程記憶);

 。3)區(qū)分弧、弧的度數(shù)、弧長(zhǎng)三概念.度數(shù)相等的弧,弧長(zhǎng)不一定相等,弧長(zhǎng)相等的弧也不一定是等孤,而只有在同圓或等圓中,才可能是等。

 。ㄋ模┏醪綉(yīng)用

  例1、已知:如圖,圓環(huán)的外圓周長(zhǎng)C1=250cm,內(nèi)圓周長(zhǎng)C2=150cm,求圓環(huán)的寬度d (精確到1mm).

   分析:(1)圓環(huán)的寬度與同心圓半徑有什么關(guān)系?

 。2)已知周長(zhǎng)怎樣求半徑?

  (學(xué)生獨(dú)立完成)

  解:設(shè)外圓的半徑為R1,內(nèi)圓的半徑為R2,則

  d=

  , ,

  ∴ (cm

   例2,彎制管道時(shí),先按中心線計(jì)算展直長(zhǎng)度,再下料,試計(jì)算圖所示管道的展直長(zhǎng)度L(單位:mm,精確到1mm)

  教師引導(dǎo)學(xué)生把實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題,滲透數(shù)學(xué)建模思想.

  解:由弧長(zhǎng)公式,得

   (mm

  所要求的展直長(zhǎng)度

  L (mm

  答:管道的展直長(zhǎng)度為2970mm.

  課堂練習(xí):P176練習(xí)1、4題.

 。ㄎ澹┛偨Y(jié)

  知識(shí):圓周長(zhǎng)、弧長(zhǎng)公式;圓周率概念;

  能力:探究問(wèn)題的方法和能力,弧長(zhǎng)公式的記憶方法;初步應(yīng)用弧長(zhǎng)公式解決問(wèn)題.

 。┳鳂I(yè)  教材P176練習(xí)2、3;P186習(xí)題3.

圓周長(zhǎng)、弧長(zhǎng)(二)

  教學(xué)目標(biāo)

  1、應(yīng)用圓周長(zhǎng)、弧長(zhǎng)公式綜合圓的有關(guān)知識(shí)解答問(wèn)題;

  2、培養(yǎng)學(xué)生綜合運(yùn)用知識(shí)的能力和數(shù)學(xué)模型的能力;

  3、通過(guò)應(yīng)用題的教學(xué),向?qū)W生滲透理論聯(lián)系實(shí)際的觀點(diǎn).

  教學(xué)重點(diǎn)靈活運(yùn)用弧長(zhǎng)公式解有關(guān)的應(yīng)用題.

  教學(xué)難點(diǎn)建立數(shù)學(xué)模型.

  教學(xué)活動(dòng)設(shè)計(jì):

 。ㄒ唬╈`活運(yùn)用弧長(zhǎng)公式

  例1、填空:

 。1)半徑為3cm,120°的圓心角所對(duì)的弧長(zhǎng)是_______cm;

 。2)已知圓心角為150°,所對(duì)的弧長(zhǎng)為20π,則圓的半徑為_(kāi)______;

  (3)已知半徑為3,則弧長(zhǎng)為π的弧所對(duì)的圓心角為_(kāi)______.

 。▽W(xué)生獨(dú)立完成,在弧長(zhǎng)公式中l、n、R知二求一.)

  答案:(1)2π;(2)24;(3)60°.

  說(shuō)明:使學(xué)生靈活運(yùn)用公式,為綜合題目作準(zhǔn)備.

  練習(xí):P196練習(xí)第1題

 。ǘ┚C合應(yīng)用題

  例2、如圖,兩個(gè)皮帶輪的中心的距離為2.1m,直徑分別為0.65m和0.24m.(1)求皮帶長(zhǎng)(保留三個(gè)有效數(shù)字);(2)如果小輪每分轉(zhuǎn)750轉(zhuǎn),求大輪每分約轉(zhuǎn)多少轉(zhuǎn).

   教師引導(dǎo)學(xué)生建立數(shù)學(xué)模型:

  分析:(1)皮帶長(zhǎng)包括哪幾部分(+DC++AB);

 。2)“兩個(gè)皮帶輪的中心的距離為2.1m”,給我們解決此題提供了什么數(shù)學(xué)信息?

 。3)AB、CD與⊙O1、⊙O2具有什么位置關(guān)系?AB與CD具有什么數(shù)量關(guān)系?根據(jù)是什么?(AB與CD是⊙O1與⊙O2的公切線,AB=CD,根據(jù)的是兩圓外公切線長(zhǎng)相等.)

 。4)如何求每一部分的長(zhǎng)?

  這里給學(xué)生考慮的時(shí)間和空間,充分發(fā)揮學(xué)生的主體作用.

  解:(1)作過(guò)切點(diǎn)的半徑O1A、O1D、O2B、O2C,作O2E⊥O1A,垂足為E.

  ∵O1O2=2.1, ,

  ∴ ,

  ∴ (m)

  ∵ ,∴

  ∴的長(zhǎng)l1 (m)

  ∵,  ∴的長(zhǎng)(m)

  ∴皮帶長(zhǎng)l=l1+l2+2AB=5.62(m).

  (2)設(shè)大輪每分鐘轉(zhuǎn)數(shù)為n,則

(轉(zhuǎn))

  答:皮帶長(zhǎng)約5.63m,大輪每分鐘約轉(zhuǎn)277轉(zhuǎn).

  說(shuō)明:通過(guò)本題滲透數(shù)學(xué)建模思想,弧長(zhǎng)公式的應(yīng)用,求兩圓公切線的方法和計(jì)算能力.

  鞏固練習(xí):P196練習(xí)2、3題.

探究活動(dòng)

鋼管捆扎問(wèn)題

  已知由若干根鋼管的外直徑均為d,想用一根金屬帶緊密地捆在一起,求金屬帶的長(zhǎng)度.

  請(qǐng)根據(jù)下列特殊情況,找出規(guī)律,并加以證明.

提示:設(shè)鋼管的根數(shù)為n,金屬帶的長(zhǎng)度為L(zhǎng)n如圖:

  當(dāng)n=2時(shí),L2=(π+2)d.

  當(dāng)n=3時(shí),L3=(π+3)d.

  當(dāng)n=4時(shí),L4=(π+4)d.

  當(dāng)n=5時(shí),L5=(π+5)d.

  當(dāng)n=6時(shí),L6=(π+6)d.

  當(dāng)n=7時(shí),L7=(π+6)d.

  當(dāng)n=8時(shí),L8=(π+7)d.

  猜測(cè):若最外層有n根鋼管,兩兩相鄰接排列成一個(gè)向外凸的圈,相鄰兩圓是切,則金屬帶的長(zhǎng)度為L(zhǎng)=(π+n)d.

  證明略.


 


【數(shù)學(xué)教案-圓的周長(zhǎng)、弧長(zhǎng)】相關(guān)文章:

數(shù)學(xué)教案圓的周長(zhǎng)05-31

圓的周長(zhǎng)數(shù)學(xué)教案07-11

《圓的周長(zhǎng)》說(shuō)課稿08-23

《圓的周長(zhǎng)》教學(xué)反思08-19

《圓的周長(zhǎng)》教學(xué)反思02-10

圓的周長(zhǎng)教學(xué)反思01-24

六年級(jí)圓的周長(zhǎng)數(shù)學(xué)教案11-20

關(guān)于圓的周長(zhǎng)教學(xué)反思04-19

《圓的周長(zhǎng)》數(shù)學(xué)教學(xué)反思04-10

弧長(zhǎng)和扇形面積教學(xué)反思04-03