初二數(shù)學上冊教案(集錦15篇)
作為一位杰出的教職工,往往需要進行教案編寫工作,借助教案可以提高教學質(zhì)量,收到預(yù)期的教學效果。如何把教案做到重點突出呢?下面是小編整理的初二數(shù)學上冊教案,歡迎大家分享。
初二數(shù)學上冊教案1
教學目標
1.掌握正方形的定義、性質(zhì)和判定及它們初步應(yīng)用.
2.理解正方形與平行四邊形、矩形、菱形的內(nèi)在聯(lián)系.
3.通過正方形與平行四邊形、矩形、菱形的聯(lián)系的教學來提高學生的邏輯思維能力.
教學重點和難點
重點是正方形的定義及正方形與矩形、菱形的聯(lián)系;
難點是正方形與矩形、菱形的關(guān)系及正方形的性質(zhì)、判定的靈活運用.
教學過程設(shè)計
一、通過知識結(jié)構(gòu)的教學,學習正方形的知識.
1.復習平行四邊形、矩形、菱形的'定義.
學生邊回答,教師邊用活動教具演示平行四邊形演變成矩形、菱形的過程,并畫出它們之間的內(nèi)在聯(lián)系圖.(畫出圖4-50(a)中的四邊形,平行四邊形、矩形、菱形及箭頭)
2.類比聯(lián)想,用運動方式得出正方形的定義.
問:既然矩形、菱形都能由平行四邊形運動變化得到,那么正方形呢?
啟發(fā)學生將小學熟悉的正方形與平行四邊形作比較,用教具演示出平行四邊形形成正方形的過程,同時歸納出正方形的定義.教師板書定義并畫出圖4-50中的正方形及箭頭①.
3.完善特殊的平行四邊形的知識結(jié)構(gòu).
(1)師生共同分析正方形定義的三個要點:①是平行四邊形;②有一個角是直角;③有一組鄰邊相等.
(2)對比正方形與矩形、菱形的定義,得出它們的聯(lián)系:
、儆烧叫味x①,②條件可知正方形是特殊的矩形.(畫出圖中的箭頭②及正方形集合A5和矩形集合A1)
、谟烧叫味x的①,③條件可知正方形是特殊的菱形.(畫出圖4-50中的箭頭③及菱形集合A2)
、塾烧叫蔚亩x的所有條件可知,正方形又是特殊的平行四邊形.(畫出圖4-50中的集合A3)
、芷叫兴倪呅、矩形、菱形、正方形都是特殊的四邊形.(畫出圖4-50(b)中四邊形集合A4)
而且從以上過程可知,正方形既是矩形又是菱形.(集合A2與A1的公共部分)
4.從整體知識結(jié)構(gòu)出發(fā),研究正方形的性質(zhì)和判定.
(1)正方形的性質(zhì).
引導學生由正方形與矩形、菱形的關(guān)系得知:正方形具有矩形和菱形的一切性質(zhì).讓學生復習矩形和菱形的性質(zhì),從而得到正方形的性質(zhì).
、龠叄核倪叾枷嗟.(性質(zhì)定理1)
、诮牵核膫角都是直角.
、蹖蔷:相等、互相垂直平分,每條對角線平分一組對角.(性質(zhì)定理2)
(2)正方形的判定.
引導學生根據(jù)正方形與平行四邊形、矩形、菱形之間的關(guān)系,總結(jié)出正方形的三類判定方法:
、傧扰卸ㄋ倪呅问瞧叫兴倪呅,再判定它是正方形;(圖4-50(a)中箭頭①)
、谙扰卸ㄋ倪呅问蔷匦危倥卸ㄟ@個矩形又是菱形;(圖4-50(a)中箭頭②)
、巯扰卸ㄋ倪呅问橇庑,再判定這個菱形又是矩形.(圖4-50(a)中箭頭③)
(3)鞏固練習:判斷下列命題是否正確,不是正方形的補充什么條件能讓它成為正方形?
、偎膫角都相等的四邊形是正方形;(×)
、谒臈l邊都相等的四邊形是正方形;(×)
、蹖蔷相等的菱形是正方形;(√)
、軐蔷互相垂直的矩形是正方形;(√)
⑤對角
初二數(shù)學上冊教案2
教學目標:
1. 掌握三角形內(nèi)角和定理及其推論;
2. 弄清三角形按角的分類, 會按角的大小對三角形進行分類;
3.通過對三角形分類的學習,使學生了解數(shù)學分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。
4.通過三角形內(nèi)角和定理的證明,提高學生的邏輯思維能力,同時培養(yǎng)學生嚴謹?shù)目茖W態(tài)
5. 通過對定理及推論的分析與討論,發(fā)展學生的求同和求異的思維能力,培養(yǎng)學生聯(lián)系與轉(zhuǎn)化的辯證思想。
教學重點:三角形內(nèi)角和定理及其推論。
教學難點:三角形內(nèi)角和定理的證明
教學用具:直尺、微機
教學方法:互動式,談話法
教學過程:
1、創(chuàng)設(shè)情境,自然引入
把問題作為教學的出發(fā)點,創(chuàng)設(shè)問題情境,激發(fā)學生學習興趣和求知欲,為發(fā)現(xiàn)新知識創(chuàng)造一個最佳的心理和認知環(huán)境。
問題1 三角形三條邊的關(guān)系我們已經(jīng)明確了,而且利用上述關(guān)系解決了一些幾何問題,那么三角形的.三個內(nèi)角有何關(guān)系呢?
問題2 你能用幾何推理來論證得到的關(guān)系嗎?
對于問題1絕大多數(shù)學生都能回答出來(小學學過的),問題2學生會感到困難,因為這個證明需添加輔助線,這是同學們第一次接觸的新知識―――“輔助線 ”。教師可以趁機告訴學生這節(jié)課將要學習的一個重要內(nèi)容(板書課題)
新課引入的好壞在某種程度上關(guān)系到課堂教學的成敗,本節(jié)課從舊知識切入,特別是從知識體系考慮引入,“學習了三角形邊的關(guān)系,自然想到三角形角的關(guān)系怎樣呢?”使學生感覺本節(jié)課學習的內(nèi)容自然合理。
2、設(shè)問質(zhì)疑,探究嘗試
(1)求證:三角形三個內(nèi)角的和等于
讓學生剪一個三角形,并把它的三個內(nèi)角分別剪下來,再拼成一個平面圖形。這里教師設(shè)計了電腦動畫顯示具體情景。然后,圍繞問題設(shè)計以下幾個問題讓學生思考,教師進行學法指導。
問題1 觀察:三個內(nèi)角拼成了一個 什么角?
問題2 此實驗給我們一個什么啟示?
(把三角形的三個內(nèi)角之和轉(zhuǎn)化為一個平角)
問題3 由圖中AB與CD的關(guān)系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?
其中問題2是解決本題的關(guān)鍵,教師可引導學生分析。對于問題3學生經(jīng)過思考會畫出此線的。這里教師要重點講解“輔助線”的有關(guān)知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當轉(zhuǎn)化條件;恰當轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的關(guān)系,達到化難為易解決問題的目的。
(2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?
學生回答后,電腦顯示圖表。
(3)三角形中三個內(nèi)角之和為定值 ,那么對三角形的其它角還有哪些特殊的關(guān)系呢?
問題1 直角三角形中,直角與其它兩個銳角有何關(guān)系?
問題2 三角形一個外角與它不相鄰的兩個內(nèi)角有何關(guān)系?
問題3 三角形一個外角與其中的一個不相鄰內(nèi)角有何關(guān)系?
其中問題1學生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學生經(jīng)過分析討論,得出結(jié)論并書寫證明過程。
這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養(yǎng)學生良好的學習習慣。第二,模仿定理的證明書寫格式,加強學生書寫能力。第三,提高學生靈活運用所學知識的能力。
3、三角形三個內(nèi)角關(guān)系的定理及推論
通過上面四個例題的分析與討論,有利于學生基礎(chǔ)知識與基本能力的掌握與提高,同時更有利于學生創(chuàng)新意識與創(chuàng)造性思維能力的培養(yǎng),在練習、講評等教學環(huán)節(jié)中,形成師生之間的、學生之間的“雙向反饋”是很重要的。
4、變式訓練,鞏固提高
根據(jù)例4 的度數(shù)的求法,思考如下問題:
(3)如圖5,過D點畫AB的平行線MN,與AC、BC交于點M、N,則 的度數(shù)多少?
(4)當MN繞著點D旋轉(zhuǎn)過程中, 會有怎樣的變化?
提示:變化1 當直線MN與AC、BC的交點仍在線段AC、BC上時, =
變化2 當直線MN與AC的交點在線段AC上,與BC的交點在BC的延長線上時,
變化3 當直線MN與AC的交點在線段AC的延長線上,與BC的交點在線段BC上時, =
變化4當直線MN與AC、BC的交點在C點時, =
經(jīng)過這樣的變式、發(fā)展、學習,不僅使學生鞏固了所學的數(shù)學知識,也使學生體驗了數(shù)學的運動變化觀,使學生的思維得到了培養(yǎng)。
5、小結(jié)
通過設(shè)置問題:“本節(jié)在知識方面以及在思想方法方面你有怎樣的收獲?”師生以談話交流的形式進行小結(jié)。強調(diào)學生注意:輔助線的作用及運用定理及推論解決問題時,要善于抓住條件與結(jié)論的關(guān)系。
6、布置作業(yè)
a、書面作業(yè)P43#3
b、上交作業(yè)P42#16、17
初二數(shù)學上冊教案3
一、教學目的:
1.掌握菱形概念,知道菱形與平行四邊形的關(guān)系.
2.理解并掌握菱形的定義及性質(zhì)1、2;會用這些性質(zhì)進行有關(guān)的論證和計算,會計算菱形的面積.
3.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.
4.根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想.
二、重點、難點
1.教學重點:菱形的性質(zhì)1、2.
2.教學難點:菱形的性質(zhì)及菱形知識的綜合應(yīng)用.
三、課堂引入
1.(復習)什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關(guān)系是什么?
2.(引入)我們已經(jīng)學習了一種特殊的平行四邊形——矩形,其實還有另外的特殊平行四邊形,請看演示:(可將事先按如圖做成的'一組對邊可以活動的教具進行演示)如圖,改變平行四邊形的邊,使之一組鄰邊相等,從而引出菱形概念.
菱形定義:有一組鄰邊相等的平行四邊形叫做菱形.
【強調(diào)】 菱形(1)是平行四邊形;(2)一組鄰邊相等.
讓學生舉一些日常生活中所見到過的菱形的例子.
四、例習題分析
例1(補充)已知:如圖,四邊形ABCD是菱形,F(xiàn)是AB上一點,DF交AC于E.
求證:∠AFD=∠CBE.
證明:∵四邊形ABCD是菱形,
∴ CB=CD,CA平分∠BCD.
∴∠BCE=∠DCE.又CE=CE,
∴△BCE≌△COB(SAS).
∴∠CBE=∠CDE.
∵ 在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC
∴ ∠AFD=∠CBE.
例2(教材P108例2)略
五、隨堂練習
1.若菱形的邊長等于一條對角線的長,則它的一組鄰角的度數(shù)分別為.
2.已知菱形的兩條對角線分別是6cm和8cm,求菱形的周長和面積.
3.已知菱形ABCD的周長為20cm,且相鄰兩內(nèi)角之比是1∶2,求菱形的對角線的長和面積.
4.已知:如圖,菱形ABCD中,E、F分別是CB、CD上的點,且BE=DF.求證:∠AEF=∠AFE.
六、課后練習
1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周長為8cm,求菱形的高.
2.如圖,四邊形ABCD是邊長為13cm的菱形,其中對角線BD長10cm,求(1)對角線AC的長度;(2)菱形ABCD的面積.
初二數(shù)學上冊教案4
一、學生情況分析及改進提高措施:
學生們經(jīng)過兩年的學習,已經(jīng)具備了初步的邏輯思維能力和簡單的抽象概括能力,養(yǎng)成了一些良好的學習習慣,掌握了一些科學的學習方法,學會了獨立思考和與人溝通、協(xié)商、合作、交流的能力,學會了探究問題,并能根據(jù)具體情況提出合理的問題,還能正確解決問題的能力。無論是理解問題的能力,還是分析、解決問題的能力均有所提高,基礎(chǔ)知識和基本技能打得也比較扎實,對數(shù)學學習有著濃厚的興趣,樂于參與到學習活動中去,特別是對一些動手操作,合作學習,實踐活動等學習內(nèi)容尤為感興趣,因此,在教學中應(yīng)多設(shè)計一些活動,引導學生進行獨立思考與合作交流,幫助學生積累參加數(shù)學學習活動的經(jīng)驗。
在數(shù)學知識上已經(jīng)掌握了兩步計算式題和有余數(shù)的除法,還有統(tǒng)計知識,并學會了辨認八個方位;掌握了萬以內(nèi)數(shù)的讀法、寫法和加、減法;還掌握了長度單位毫米、厘米、分米、米和千米的實際長度和簡單的換算以及實際測量,并能用以上這些相應(yīng)的知識解決實際生活中的問題?傊@些技能和知識點都為本學期進一步學習新知識打下了堅實的基礎(chǔ),他們愛學數(shù)學的熱情,以及對數(shù)學的感悟能力會在本學期進一步得到發(fā)揚光大,他們的情感、態(tài)度、價值觀會沿著良性軌道螺旋式上升。
具體提高措施是:
1.從學生的年齡特點出發(fā),多采用情境活動式教學,培養(yǎng)學生的參與意識。兩班學生都能根據(jù)教師給出的情境獲取相關(guān)的數(shù)學信息,并能根據(jù)有效信息提出數(shù)學問題,能積極投入到探索問題的活動中去,絕大部分學生能夠在課堂上主動的研究問題,獲取知識。
2.在課堂教學中,多增添一些與學生生活相關(guān)的利于孩子理解的問題,讓學生在解決問題的過程中能夠聯(lián)系到實際,便于對問題的理解。結(jié)合學生的生活實際,將問題生活化,讓學生從生活中獲取到更多的解決問題的素材。
3.課后練習注重增添以學習內(nèi)容為主的相關(guān)實踐練習,加強各學科之間的聯(lián)系,少一些呆板的練習,提高練習的實踐性和趣味性。在上學期的教學中,我發(fā)現(xiàn)學生們比較喜歡做不同科目之間有聯(lián)系的綜合性作業(yè),例如我把數(shù)學與科學課相結(jié)合,讓他們種豆子,了解植物的生長,并做記錄,再將每天的記錄制作成統(tǒng)計圖,學生完成作業(yè)的積極性特別高。我為了讓學生了解長度單位,讓他們從成語詞典上收集有關(guān)長度單位的成語,通過對詞語的理解把握其表示的長度。
4.加強學校教育和家庭教育的聯(lián)系。關(guān)注學生的平時學習情況,與學生家長多溝通交流。
二、本冊教材分析
本冊教材充分體現(xiàn)了新《課程標準》的理念,以學生的數(shù)學活動實踐為學習內(nèi)容,教材創(chuàng)設(shè)了生動有趣的情境,引導學生在解決現(xiàn)實問題的過程中獲得對數(shù)學知識的理解和體驗。教學內(nèi)容主要包括(1)乘法;(2)除法;(3)觀察物體;(4)千克、克、噸;(5)、周長;(6)年、月、日;(7)可能性;(8)共有五個社會實踐活動,還有兩個整理復習,一個總復習。具體特點是:
1.在數(shù)與代數(shù)的.學習中,重視動手操作與抽象概括相結(jié)合,體驗乘、除法意義,發(fā)展了學生的數(shù)感和符號感。
2.在空間和圖形學習中,從學生的生活經(jīng)驗出發(fā),注重通過操作活動發(fā)展空間觀念。
3.教材為教師留下了創(chuàng)造空間,可結(jié)合自身教學要求,生發(fā)新的教學設(shè)想,內(nèi)化自己的教學設(shè)計。
三、總體教學目標:
(一)、知識與技能
1.在單元學習中,學生通過“數(shù)一數(shù)”、“分一分”等活動,經(jīng)歷從具體情境中抽象出乘法除法算式,體會乘法與除法的意義。
2.學平面圖形的周長,會進行周長的計算。
(二)、實踐能力培養(yǎng)
1.觀察物體,引導學生經(jīng)歷觀察的過程,體驗從不同的位置觀察,所看到的物體可能是不一樣的。
2.結(jié)合生活情境,感受并認識質(zhì)量單位。
3.經(jīng)歷對生活中某些現(xiàn)象進行推理、判斷的過程,能對生活中的某些現(xiàn)象按一定的方法進行邏輯推理、判斷其結(jié)果。
(三)、情感與態(tài)度
1、讓學生在觀察和操作的學習活動中,能夠感受到思考的條理性和合理性。
2、教師重視對學生數(shù)學學習過程的評價,讓他們在感受到樂趣之外,應(yīng)具備必要的學習自信心,養(yǎng)成良好的學習習慣。
教研專題:
創(chuàng)設(shè)課堂學習情境,有效培養(yǎng)創(chuàng)新意識。
個人專題:
在情境中培養(yǎng)學生的自主學習意識,提高課堂的有效性。
初二數(shù)學上冊教案5
教學目標:
經(jīng)歷探索兩個圓之間位置關(guān)系的過程;了解圓與圓之間的幾種位置關(guān)系;了解兩圓外切、內(nèi)切與兩圓圓心距d、半徑R和r的數(shù)量關(guān)系的聯(lián)系
教學重點和難點
重點:圓與圓之間的幾種位置關(guān)系
難點:兩圓外切、內(nèi)切與兩圓圓心距d、半徑R和r的數(shù)量關(guān)系的聯(lián)系
教學過程設(shè)計
一、從學生原有的認知結(jié)構(gòu)提出問題
1)復習點與圓的位置關(guān)系;2)復習直線與圓的位置關(guān)系。
二、師生共同研究形成概念
1.書本引例
☆ 想一想 P 125 平移兩個圓
利用平移實驗直觀地探索圓和圓的位置關(guān)系。
2.圓與圓的位置關(guān)系
每一種位置關(guān)系都可以先讓學生想想應(yīng)該用什么名稱表達。在講解兩圓外切、內(nèi)切與兩圓圓心距d、半徑R和r的數(shù)量關(guān)系的聯(lián)系時,可先讓學生探索,老師不要生硬地把答案說出來
☆ 鞏固練習 若兩圓沒有交點,則這兩個圓的位置關(guān)系是 相離 ;
若兩圓有一個交點,則這兩個圓的位置關(guān)系是 相切 ;
若兩圓有兩個交點,則這兩個圓的'位置關(guān)系是 相交 ;
☆ 想一想 書本P 126 想一想
通過實際例子讓學生理解圓與圓的位置關(guān)系。
3.圓與圓相切的性質(zhì)
☆ 想一想 書本P 127 想一想
旨在引導學生思考兩圓相切的性質(zhì):如果兩圓相切,那么兩圓的連心線經(jīng)過切點,這一性質(zhì)是下面議一議的基礎(chǔ)。學生容易看出兩圓相切圖形的軸對稱性及對稱軸,但要說明切點在連心線上則有一定困難。
如果兩圓相切,那么兩圓的連心線經(jīng)過切點
4.講解例題
例1.已知⊙ 、⊙ 相交于點A、B,∠A B = 120°,∠A B = 60°, = 6cm。求:(1)∠ A 的度數(shù);2)⊙ 的半徑 和⊙ 的半徑 。
5.講解例題
例2.兩個同樣大小的肥皂泡粘在一起,其剖面如圖所示,分隔兩個肥皂泡的肥皂膜PQ成一條直線,TP、NP分別為兩圓的切線,求∠TPN的大小。
三、隨堂練習
1.書本 P 128 隨堂練習
2.《練習冊》 P 59
四、小結(jié)
圓與圓的位置關(guān)系;圓心距與兩圓半徑和兩圓的關(guān)系。
五、作業(yè)
書本 P 130 習題3.9 1
初二數(shù)學上冊教案6
一、學生起點分析
八年級學生已在七年級學習了“變量之間的關(guān)系”,對利用圖象表示變量之間的關(guān)系已有所認識,并能從圖象中獲取相關(guān)的信息,對函數(shù)與圖象的聯(lián)系還比較陌生,需要教師在教學中引導學生重點突破函數(shù)與圖象的對應(yīng)關(guān)系.
二、教學任務(wù)分析
《一次函數(shù)的圖象》是義務(wù)教育課程標準北師大實驗教科書八年級(上)第六章《一次函數(shù)》的第三節(jié).本節(jié)內(nèi)容安排了2個課時,第1課時是讓學生了解函數(shù)與對象的對應(yīng)關(guān)系和作函數(shù)圖象的步驟和方法,明確一次函數(shù)的圖象是一條直線,能熟練地作出一次函數(shù)的圖象。第2課時是通過對一次函數(shù)圖象的比較與歸類,探索一次函數(shù)及其圖象的簡單性質(zhì).本課時是第一課時,教材注重學生在探索過程的體驗,注重對函數(shù)與圖象對應(yīng)關(guān)系的認識.
為此本節(jié)課的教學目標是:
1.了解一次函數(shù)的圖象是一條直線,能熟練作出一次函數(shù)的圖象.
2.經(jīng)歷函數(shù)圖象的作圖過程,初步了解作函數(shù)圖象的一般步驟:列表、描點、連線.
3.已知函數(shù)的代數(shù)表達式作函數(shù)的圖象,培養(yǎng)學生數(shù)形結(jié)合的意識和能力.
4.理解一次函數(shù)的代數(shù)表達式與圖象之間的一一對應(yīng)關(guān)系.
教學重點是:
初步了解作函數(shù)圖象的一般步驟:列表、描點、連線.
教學難點是:
理解一次函數(shù)的代數(shù)表達式與圖象之間的一一對應(yīng)關(guān)系.
三、教學過程設(shè)計
本節(jié)課設(shè)計了七個教學環(huán)節(jié):
第一環(huán)節(jié):創(chuàng)設(shè)情境引入課題;
第二環(huán)節(jié):畫一次函數(shù)的圖象;
第三環(huán)節(jié):動手操作,深化探索;
第四環(huán)節(jié):鞏固練習,深化理解;
第五環(huán)節(jié):課時小結(jié);
第六環(huán)節(jié):拓展探究;
第七環(huán)節(jié):作業(yè)布置.
第一環(huán)節(jié):創(chuàng)設(shè)情境引入課題
內(nèi)容:
一天,小明以80米/分的速度去上學,請問小明離家的距離S(米)與小明出發(fā)的時間t(分)之間的函數(shù)關(guān)系式是怎樣的?它是一次函數(shù)嗎?它是正比例函數(shù)嗎? S=80t(t≥0)下面的圖象能表示上面問題中的S與t的關(guān)系嗎?
我們說,上面的圖象是函數(shù)S=80t(t≥0)的圖象,這就是我們今天要學習的主要內(nèi)容:一次函數(shù)的圖象的特殊情況正比例函數(shù)的.圖象。
目的:通過學生比較熟悉的生活情景,讓學生在寫函數(shù)關(guān)系式和認識圖象的過程中,初步感受函數(shù)與圖象的聯(lián)系,激發(fā)其學習的欲望.
效果:學生通過對上述情景的分析,初步感受到函數(shù)與圖象的聯(lián)系,激發(fā)了學生的學習欲望.
第二環(huán)節(jié):畫正比例函數(shù)的圖象
內(nèi)容:首先我們來學習什么是函數(shù)的圖象?
把一個函數(shù)的自變量x與對應(yīng)的因變量y的值分別作為點的橫坐標和縱坐標,在直角坐標系內(nèi)描出它的對應(yīng)點,所有這些點組成的圖形叫做該函數(shù)的圖象(graph).
例1請作出正比例函數(shù)y=2x的圖象.
第三環(huán)節(jié):動手操作,深化探索
內(nèi)容:做一做
(1)作出正比例函數(shù)y= 3x的圖象.
(2)在所作的圖象上取幾個點,找出它們的橫坐標和縱坐標,并驗證它們是否都滿足關(guān)系y= 3x.
請同學們以小組為單位,討論下面的問題,把得出的結(jié)論寫出來.
(1)滿足關(guān)系式y(tǒng)= 3x的x,y所對應(yīng)的點(x,y)都在正比例函數(shù)y= 3x的圖象上嗎?
(2)正比例函數(shù)y= 3x的圖象上的點(x,y)都滿足關(guān)系式y(tǒng)= 3x嗎?
(3)正比例函數(shù)y=kx的圖象有什么特點?
明晰
由上面的討論我們知道:正比例函數(shù)的代數(shù)表達式與圖象是一一對應(yīng)的,即滿足正比例函數(shù)的代數(shù)表達式的x,y所對應(yīng)的點(x,y)都在正比例函數(shù)的圖象上;正比例函數(shù)的圖象上的點(x,y)都滿足正比例函數(shù)的代數(shù)表達式.正比例函數(shù)y=kx的圖象是一條直線,以后可以稱正比例函數(shù)y=kx的圖象為直線y=kx.
議一議
既然我們得出正比例函數(shù)y=kx的圖象是一條直線.那么在畫正比例函數(shù)圖象時有沒有什么簡單的方法呢?
因為“兩點確定一條直線”,所以畫正比例函數(shù)y=kx的圖象時可以只描出兩個點就可以了.因為正比例函數(shù)的圖象是一條過原點(0,0)的直線,所以只需再確定一個點就可以了,通常過(0,0),(1,k)作直線.
4.3一次函數(shù)的圖象:同步測試
14若直線經(jīng)過第一.二.四象限,則k.b的取值范圍是( ).
A.k>0,b>0 B.k>0,b<0
C.k<0,b>0 D. k<0,b<0
2.已知一次函數(shù)y=3-2x
(1)求圖像與兩條坐標軸的交點坐標,并在下面的直角坐標系中畫出它的圖像;
(2)從圖像看,y隨著x的增大而增大,還是隨x的增大而減小?
(3)x取何值時,y>0?
3.已知一次函數(shù)y=-2x+4
(1)畫出函數(shù)的圖象.
(2)求圖象與x軸、y軸的交點A、B的坐標.
(3)求A、B兩點間的距離.
(4)求△AOB的面積.
(5)利用圖象求當x為何值時,y≥0.
《函數(shù)的圖象》課后練習
1.一根彈簧原長12cm,它所掛物體的質(zhì)量不超過10kg,并且每掛重物1kg就伸長1.5cm,掛重物后彈簧長度y(cm)與掛重物x(kg)之間的函數(shù)關(guān)系式是()
A.y=1.5(x+12)(0≤x≤10)
B.y= 1.5x+12(0≤x≤10)
C.y=1.5x+10(x≥0)
D.y=1.5(x-12)(0≤x≤10)
初二數(shù)學上冊教案7
教學目標
1知識與技能目標
。1)通過拼圖活動,讓學生感受無理數(shù)產(chǎn)生的實際背景和引入的必要性.
。2)能判斷給出的數(shù)是否為無理數(shù),并能說出理由.
2過程與方法目標
。1)學生親自動手做拼圖活動,感受無理數(shù)存在的必要性和合理性,培養(yǎng)學生的動手能力和合作精神.
(2)通過回顧有理數(shù)的有關(guān)知識,能正確地進行推理和判斷識別某些數(shù)是否為有理數(shù)、無理數(shù),訓練他們的思維判斷力.
。3)借助計算器進行估算,培養(yǎng)學生的估算能力,發(fā)展學生的抽象概括能力,并在活動中進一步發(fā)展學生獨立思考、合作交流的意識和能力.
3情感與態(tài)度目標
。1)激勵學生積極參與教學活動,提高大家學習數(shù)學的熱情.
。2)引導學生充分進行交流,討論與探索等教學活動,培養(yǎng)他們的合作精神與鉆研精神,借助計算器進行估算.
(3)了解有關(guān)無理數(shù)發(fā)現(xiàn)的知識,鼓勵學生大膽質(zhì)疑,培養(yǎng)他們?yōu)檎胬矶鴬^半的獻身精神.
教學重點
1讓學生經(jīng)歷無理數(shù)發(fā)現(xiàn)的過程,感知生活中確實存在著不同于有理數(shù)的數(shù).
2會判斷一個數(shù)是否為有理數(shù),是否不是有理數(shù).
3用計算器進行無理數(shù)的估算.
教學難點
1把兩個邊長為1的正方形拼成一個大正方形的動手操作過程.
2無理數(shù)概念的建立及估算.
3判斷一個數(shù)是否為有理數(shù).
教學準備:多媒體,兩個邊長為1的正方形,剪刀,短繩.
教學過程:
第一環(huán)節(jié):章節(jié)引入(2分鐘,學生閱讀感受)
內(nèi)容:.小紅是剛升入八年級的新生,一個周末的上午,當工程師的爸爸給小紅出了兩個數(shù)學題:
。1)兩個數(shù)3.252525……與3.252252225……一樣嗎?它們有什么不同?
。2)一個邊長為6cm的正方形木板,按如圖的`痕跡鋸掉四個一樣的直角三角形.請計算剩下的正方形木板的面積是多少?剩下的正方形木板的邊長又是多少厘米呢?你能幫小紅解決這個問題嗎?
b.你能求出面積為2的正方形的邊長嗎?你知道圓周率的精確值嗎?它們能用整數(shù)或分數(shù)(即有理數(shù))來表示嗎?
第二環(huán)節(jié):復習引入(3分鐘,學生口答)
內(nèi)容:閱讀下面的資料,在數(shù)學中,有理數(shù)的定義為:形如的數(shù)(p、q為互質(zhì)的整數(shù),且p≠0)叫做有理數(shù),當p=1,q為任意整數(shù)時,有理數(shù)就是指所有的整數(shù),如:=-2等,當p≠1時,由p、q互質(zhì)可知,有理數(shù)就是指所有的分數(shù),如,-,-等,綜上所述,有理數(shù)就是整數(shù)和分數(shù)的統(tǒng)稱.
請用上述材料中所涉及的知識證明下面的問題:
a.直角邊長分別為3和1的直角三角形的斜邊長是不是有理數(shù)?
b.復習前面學過的數(shù),有理數(shù)包括整數(shù)和分數(shù),有理數(shù)范圍是否滿足實際生活的需要呢?
第三環(huán)節(jié):活動探究(15分鐘,學生動手操作,小組合作探究)
。ㄒ唬┌l(fā)現(xiàn)新數(shù)
內(nèi)容:將課前已準備好的兩個邊長為1的小正方形剪一剪,拼一拼,設(shè)法得到一個大正方形.
在學生活動的基礎(chǔ)上,教師利用多媒體展示其中一種剪拼過程,并拋出下面的議一議:
(1)設(shè)大正方形的邊長為,應(yīng)滿足什么條件?
。2)滿足:2=2的數(shù)是一個什么樣的數(shù)?可能是整數(shù)嗎?說明你的理由?
(3)可能是分數(shù)嗎?說說你的理由?
引出課題《數(shù)怎么又不夠用了》
。ǘ└惺苄聰(shù)的廣泛性
內(nèi)容:面積為5的正方形,它的邊長b可能是有理數(shù)嗎?說說你的理由。
。ㄈ╈柟舔炞C,應(yīng)用拓展
內(nèi)容:aB,C是一個生活小區(qū)的兩個路口,BC長為2千米,A處是一個花園,從A到B,C兩路口的距離都是2千米,現(xiàn)要從花園到生活小區(qū)修一條最短的路,這條路的長可能是整數(shù)嗎?可能是分數(shù)嗎?說明理由.
b如圖(1)是由16個邊長為1的小正方形拼成的,試從連接這些
小正方形的兩個頂點所得的線段中,分別找出兩條長度是有理數(shù)的線段,兩條長度不是有理數(shù)的線段
第四環(huán)節(jié):介紹歷史,開闊視野(3分鐘,學生閱讀)
內(nèi)容:早在公元前,古希臘數(shù)學家畢達哥拉斯認為萬物皆“數(shù)”,即“宇宙間的一切現(xiàn)象都能歸結(jié)為整數(shù)或整數(shù)之比”,也就是一切現(xiàn)象都可用有理數(shù)去描述.后來,這個學派中的一個叫希伯索斯的成員發(fā)現(xiàn)邊長為1的正方形的對角線的長不能用整數(shù)或整數(shù)之比來表示,這個發(fā)現(xiàn)動搖了畢達哥拉斯學派的信條,據(jù)說,為此希伯斯被投進了大海,他為真理而獻出了寶貴的生命,但真理是不可戰(zhàn)勝的,后來,古希臘人終于正視了希伯索斯的發(fā)現(xiàn).
第五環(huán)節(jié):課時小結(jié)(2分鐘,全班交流)
內(nèi)容談?wù)劚竟?jié)課你有什么收獲與體會?有哪些困難需要別人幫你解決?
b感受數(shù)不夠用了,會確定一個數(shù)是有理數(shù)或不是有理數(shù).
c本節(jié)課用到基本方法:動手、操作、觀察、思考,猜想驗證,推理,歸納等過程,獲取數(shù)學知識.
第六環(huán)節(jié):布置作業(yè)
初二數(shù)學上冊教案8
一、班級情況分析:
本學期一(1)班有學生40人,新轉(zhuǎn)學來一名女生。上學期末考試及格人數(shù)28人,高分人數(shù)3人,優(yōu)秀人數(shù)15人,雖然學生成績在年級排名第一,能過鎮(zhèn)中線,但是學生未能發(fā)揮出真實水平。優(yōu)秀臨界生以及及格臨界生的提升潛力較大。
一(7)班有學生38人,上學期末考試及格人數(shù)18人,高分人數(shù)2人,優(yōu)秀人數(shù)5人,全班優(yōu)秀學生不多不夠拔尖,成績中層的學生占據(jù)大部分。學生好動,對數(shù)學學習的積極性普遍不夠高,學生好動,課堂氣氛較活躍。學生數(shù)學基礎(chǔ)不扎實。提升空間較大。
兩班的整體成績均不夠理想。
二、教材分析:
本套教材切合《標準》的課程目標,有以下特點:
1.為學生的數(shù)學學習構(gòu)筑起點,提供大量數(shù)學活動的線索,成為供所有學生從事數(shù)學學習的出發(fā)點。
2.向?qū)W生提供現(xiàn)實、有趣、富有挑戰(zhàn)性的學習素材。所有數(shù)學知識的學習,都力求從學生實際出發(fā),以他們熟悉或感興趣的問題情境引入學習主題,并展開數(shù)學探究。
3.為學生提供探索、交流的時間和空間。設(shè)立了“做一做”、“想一想”、“議一議”等欄目,以使學生通過自主探索與合作交流,形成新的知識。
4.展現(xiàn)數(shù)學知識的形成與應(yīng)用過程,讓學生經(jīng)歷真正的“做數(shù)學”、“用數(shù)學”的過程。
5.滿足不同學生發(fā)展的需求。
三、教學目標及要求:
第一章:
1.經(jīng)歷用字母表示數(shù)量關(guān)系的過程,在現(xiàn)實情境中進一步理解字母表示數(shù)的意義,發(fā)展符號感。
2.經(jīng)歷探索整式運算法則的過程,理解整式運算的算理,進一步發(fā)展觀察、歸納、類比、概括等能力,發(fā)展有條理的思考及語言表達能力。
3.了解整數(shù)指數(shù)冪的意義和正整數(shù)指數(shù)冪的運算性質(zhì),會進行簡單的整式加、減、乘、除運算。
4.會推導乘法公式:(a+b)(a-b)=a2-b2 (a+b)=a2+2ab+b2
第二章:
1.經(jīng)歷觀察、操作、想象、推理、交流等過程,進一步發(fā)展空間觀念、推理能力和有條理表達的能力。
2.在具體情境中了解補角、余角、對頂角,知道等角的余角相等、等角的補角相等、對頂角相等。會用三角尺過已知直線外一點畫這條直線的平行線;會用尺規(guī)作一條線段等于已知線段、作一個角等于已知角。
3.經(jīng)歷探索直線平行的條件以及平行線特征的過程,掌握直線平行的條件以及平行線的特征。
4.進一步激發(fā)學生對數(shù)學方面的興趣,體驗從數(shù)學的角度認識現(xiàn)實。
第三章:
1.能形象地描述百萬分之一等較小的數(shù)據(jù),并用科學記數(shù)法表示它們,進一步發(fā)展數(shù)感;能借助計算器進行有關(guān)科學記數(shù)法的計算。
2.了解近似數(shù)與有效數(shù)字的概念,能按要求取近似數(shù),體會近似數(shù)的意義及在生活中的作用。
3.通過實例,體驗收集、整理、描述和分析數(shù)據(jù)的過程。
4.能讀懂統(tǒng)計圖并從中獲取信息,能形象、有效地運用統(tǒng)計圖描述數(shù)據(jù)。
第四章:
1.經(jīng)歷從實際問題和游戲中了解必然事件、不可能事件和不確定事件發(fā)生的可能性。
2.體會等可能性與游戲規(guī)則的公平性,抽象出概率模型,計算概率,解決實際、作出合理決策的過程,體會概率是描述不確定現(xiàn)象的數(shù)學模型。
3.能設(shè)計符合要求的簡單概率模型。
第五章:
1.通過觀察、操作、想象、推理、交流等活動,發(fā)展空間觀念,積累數(shù)學活動經(jīng)驗。
2.在探索圖形性質(zhì)的過程中,發(fā)展推理能力和有條理的表達能力。
3.進一步認識三角形的有關(guān)概念,了解三邊之間的關(guān)系以及三角形的內(nèi)角和,了解三角形的穩(wěn)定性。
4.了解圖形的全等,經(jīng)歷探索三角形全等條件的過程,掌握兩個三角形全等的條件,能應(yīng)用三角形的全等解決一些實際問題。
5.在分別給出兩角一夾邊、兩邊一夾角和三邊的條件下,能夠利用尺規(guī)作出三角形。
第六章:
1.經(jīng)歷探索具體情境中兩個變量之間的關(guān)系的'過程,進一步發(fā)展符號感和抽象思維。
2.能發(fā)現(xiàn)實際情境中的變量及其相互關(guān)系,并確定其中的自變量或因變量。
3.能從表格、圖象中分析出某些變量之間的關(guān)系,并能用自己的語言進行表達,發(fā)展有條理地進行思考和表達的能力。
4.能根據(jù)具體問題,選取用表格或關(guān)系式來表示某些變量之間的關(guān)系,并結(jié)合對變量之間關(guān)系的分析,嘗試對變化趨勢進行初步的預(yù)測。
第七章:
1.在豐富的現(xiàn)實情境中,經(jīng)歷觀察、折疊、剪紙,圖形欣賞與設(shè)計等數(shù)學活動過程,進一步發(fā)展空間觀念。
2.通過豐富的生活實例認識軸對稱,探索它的基本性質(zhì),理解對應(yīng)點所連的線段被對稱軸垂直平分的性質(zhì)。
3.探索并了解基本圖形的軸對稱性及其相關(guān)性質(zhì)。
4.能夠按要求作出簡單平面圖形經(jīng)過軸對稱后的圖形,探索簡單圖形之間的軸對稱關(guān)系,并能指出對稱軸。
5.欣賞現(xiàn)實生活中的軸對稱圖形,能利用軸對稱進行一些圖案設(shè)計,體驗軸對稱在現(xiàn)實生活中的廣泛應(yīng)用和豐富的文化價值。
四、教學改革的設(shè)想(教學具體措施)
充分體現(xiàn)培優(yōu)扶困的實施,提高優(yōu)秀人數(shù)和及格人數(shù),減少低分人數(shù),切實做到:
1、根據(jù)學生的個別差異。因材施教,熱情關(guān)懷,循循善誘,加強個別輔導。幫助他們增強學習的信心,逐步達到教學的基本要求,盡量做好培優(yōu)輔差工作。
2、精心設(shè)計練習,講究練習方式提高練習效率,對作業(yè)嚴格要求,及時檢查,認真批改,對作業(yè)中的錯誤及時找出原因,要求學生認真改正,培養(yǎng)學生獨立完成作業(yè)的良好習慣。
3、認真?zhèn)湔n,深入鉆研教材,堅持自主學習,充分發(fā)揮學生的主動學習有積極性,了解學生裝學習數(shù)學的特點,研究教學規(guī)律,不斷改進教學方法。
4、堅持學習,多聽課,多模仿,虛心向有經(jīng)驗的老師請教教育教學方法。努力提升自身的教學技能。
5、在教學中,加強學生思維能力的培養(yǎng)和非智力因素的培養(yǎng)。多開展數(shù)學活動課,擴大學生的視野,拓寬知識面,培養(yǎng)學習數(shù)學的興趣,發(fā)展數(shù)學才能,發(fā)揮學生的主動性,獨立性和創(chuàng)造性。
6、開展“一幫一”活動,實行以優(yōu)帶差點的幫助方法,多利用課余時間加強輔導,從基礎(chǔ)知識補起,力求使學生一課一得,力求提高優(yōu)秀率和及格率。
7.課前充分備好課,在課堂教學中特別要體現(xiàn)出培扶,分層次教育。
8.重視學生學習興趣的培養(yǎng),激發(fā)學生學習數(shù)學的內(nèi)驅(qū)力。
9.大膽地深度嘗試新的教學方法,要因地制宜,因材施教。
10.重視基礎(chǔ)知識過關(guān)和單元測試過關(guān)工作,及時進行單元總結(jié),做好平時的查漏補缺工作,不遺漏知識盲點。
11.注重對作業(yè)、練習紙、練習冊、測驗卷的及時批改,并盡量做到全批全改,及時反饋信息。
12.多用多媒體教學,使數(shù)學生動化。
13.多用實物教學,使數(shù)學形象化。
14.實行課課清,日日清,周周清。
15.加強課堂管理,嚴把課堂質(zhì)量關(guān),提高課堂效率。
16.抓好學生的作業(yè)上交完成情況。
17.加強與學生的交流,做好學生的思想教育與培優(yōu)輔差工作。
五、擬定本學期教學目標
六、擬定本學期培優(yōu)扶養(yǎng)計劃。
培扶措施
對臨界優(yōu)秀生
在理解題、思維訓練題給予方法指導,并要加強書面的表達能力。做到思路清晰,格式標準;A(chǔ)訓練題的過關(guān)檢測,對每次測試的成績給予個別指導,多用激勵教育。
對臨界及格生:
首先加強基礎(chǔ)知識的培訓,尤其要在選擇題、填空題多下功夫。在課堂上、課后對他們多加注意,及時糾正錯誤。抓好每次單元過關(guān)測試工作,抓好時機,多表揚,樹立信心。
七、教學內(nèi)容及課時安排(略)
八、作業(yè)格式及批改要求:
作業(yè)格式:
1.作業(yè)本左邊都畫上豎線,留約0.5CM空白。
2.每次作業(yè)都要在第一行注明日期和作業(yè)的出處,如P42,1即課本42面第1題。
3。每題作業(yè)之間要留一行隔開,每次作業(yè)之間至少留一行空白,再寫下一次作業(yè)。
批改要求:
1.每題作業(yè)都要有批改的痕跡,錯的打“×”,對的打“√”,書寫要清晰,明確看出錯對。
2.每次作業(yè)必須全批全改,要體現(xiàn)出層次。作業(yè)簿要打分數(shù)+等級(等級分A、B、C三等,代表學生的書寫成績。)
3、每次的作業(yè)要及時更正,更正時統(tǒng)一在每次的作業(yè)后面用紅筆更正。
初二數(shù)學上冊教案9
一、基本知識和需說明的問題:
(一)圓的有關(guān)性質(zhì),本節(jié)中最重要的定理有4個。
1、垂徑定理:
本定理和它的三個推論說明: 在(垂直于弦(不是直徑的弦);(2)平分弦;(3)平分弦所對的;(4)過圓心(是半徑或是直徑)這四個語句中,滿足兩個就可得到其它兩個的結(jié)論。如垂直于弦(不是直徑的弦)的直徑,平分弦且平分弦所對的兩條弧。條件是垂直于弦(不是直徑的弦)的直徑,結(jié)論是平分弦、平分弧。再如弦的垂直平分線,經(jīng)過圓心且平分弦所對的弧。條件是垂直弦,、分弦,結(jié)論是過圓心、平分弦。
應(yīng)用:在圓中,弦的一半、半徑、弦心距組成一個直角三角形,利用勾股定理解直角三角形的知識,可計算弦長、半徑、弦心距和弓形的高。
2、圓心角、弧、弦、弦心距四者之間的關(guān)系定理:
在同圓和等圓中, 圓心角、弧、弦、弦心距這四組量中有一組量相等,則其它各組量均相等。這個定理證弧相等、弦相等、圓心角相等、弦心距相等是經(jīng)常用的。
3、圓周角定理:
此定理在證題中不大用,但它的推論,即弧相等所對的圓周角相等;在同圓或等圓中,圓周角相等,弧相等。直徑所對的圓周角是直角,90°的圓周角所對的弦是直徑,都是很重要的。條件中若有直徑,通常添加輔助線形成直角。
4、圓內(nèi)接四邊形的性質(zhì)。
(二)直線和圓的位置關(guān)系。
1、性質(zhì):
圓的切線垂直于經(jīng)過切點的半徑。(有了切線,將切點與圓心連結(jié),則半徑與切線垂直,所以連結(jié)圓心和切點,這條輔助線是常用的。)
2、切線的判定有兩種方法。
、偃糁本與圓有公共點,連圓心和公共點成半徑,證明半徑與直線垂直即可。
、谌糁本和圓公共點不確定,過圓心做直線的垂線,證明它是半徑(利用定義證)。根據(jù)不同的條件,選擇不同的添加輔助線的方法是極重要的。
3、三角形的內(nèi)切圓:
內(nèi)心是內(nèi)切圓圓心,具有的性質(zhì)是:到三角形的三邊距離相等,還要注意說某點是三角形的內(nèi)心。連結(jié)三角形的頂點和內(nèi)心,即是角平分線。
4、切線長定理:自圓外一點引圓的切線,則切線和半徑、圓心到該點的連線組成直角三角形。
。ㄈ﹫A和圓的位置關(guān)系。
1、記住5種位置關(guān)系的圓心距d與兩圓半徑之間的相等或不等關(guān)系。會利用d與R,r之間的關(guān)系確定兩圓的位置關(guān)系,會利用d,R,r之間的關(guān)系確定兩圓的位置關(guān)系。
2、相交兩圓,添加公共弦,通過公共弦將兩圓連結(jié)起來。
。ㄋ模┱噙呅魏蛨A。
1、弧長公式。
2、扇形面積公式。
3、圓錐側(cè)面積計算公式:S= 2π=π。
二、鞏固練習。
。ㄒ唬┚倪x一選,相信自己的判斷!
1、如圖,把自行車的兩個車輪看成同一平面內(nèi)的.兩個圓,則它們的位置關(guān)系是
A、外離 B、外切 C、相交 D、內(nèi)切
2、已知⊙O的直徑為12cm,圓心到直線L的距離為6cm,則直線L與⊙O的公共點的個數(shù)為( )
A、2 B、1 C、0 D、不確定
3、已知⊙O1與⊙O2的半徑分別為3cm和7cm,兩圓的圓心距O1O2 =10cm,則兩圓的位置關(guān)系是( )
A、外切 B、內(nèi)切 C、相交 D、相離
4、已知在⊙O中,弦AB的長為8厘米,圓心O到AB的距離為3厘米,則⊙O的半徑是( )
A、3厘米 B、4厘米 C、5厘米 D、8厘米
5、下列命題錯誤的是( )
A、經(jīng)過三個點一定可以作圓 B、三角形的外心到三角形各頂點的距離相等
C、同圓或等圓中,相等的圓心角所對的弧相等 D、經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
6、在平面直角坐標系中,以點(2,3)為圓心,2為半徑的圓必定( )
A、與x軸相離、與y軸相切 B、與x軸、y軸都相離
C、與x軸相切、與y軸相離 D、與x軸、y軸都相切
7、在Rt△ABC中,∠C=90°,AC=12,BC=5,將△ABC繞邊AC所在直線旋轉(zhuǎn)一周得到圓錐,則該圓錐的側(cè)面積是( )
A、25π B、65π C、90π D、130π
(二)細心填一填,試自己的身手!
12、各邊相等的圓內(nèi)接多邊形_____正多邊形;各角相等的圓內(nèi)接多邊形_____正多邊形。(填“是”或“不是”)
13、△ABC的內(nèi)切圓半徑為r,△ABC的周長為l,則△ABC的面積為_______________ 。
14、已知在⊙O中,半徑r=13,弦AB∥CD,且AB=24,CD=10,則AB與CD的距離為__________。
15、同圓的內(nèi)接正四邊形和內(nèi)接正方邊形的連長比為____________________。
初二數(shù)學上冊教案10
一、教學目標:
1.經(jīng)歷觀察、發(fā)現(xiàn)、探究中心對稱圖形的有關(guān)概念和基本性質(zhì)的過程,積累一定的審美體驗。
2了解中心對稱圖形及其基本性質(zhì),掌握平行四邊形也是中心對稱圖形。
二、教學重、難點:
理解中心對稱圖形的概念及其基本性質(zhì)。
三、教學過程:
(一)創(chuàng)設(shè)問題情境
1.以魔術(shù)創(chuàng)設(shè)問題情境:教師通過撲克牌魔術(shù)的演示引出研究課題,激發(fā)學生探索“中心對稱圖形”的興趣。
【魔術(shù)設(shè)計】:師取出若干張非中心對稱的撲克牌和一張是中心對稱的牌,按牌面的多數(shù)指向整理好(如上圖),然后請一位同學上臺任意抽出一張撲克,把這張牌旋轉(zhuǎn)180O后再插入,再請這位同學洗幾下,展開撲克牌,馬上確定這位同學抽出的撲克。
(課堂反應(yīng):學生非常安靜,目不轉(zhuǎn)睛地盯著老師做動作。每完成一個動作之后,學生就進入沉思狀態(tài),接著就是小聲議論。)
師重復以上活動
2次后提問:
(1)你們知道這是什么原因嗎?老師手中的撲克牌圖案有什么特點?
(2)你能說明為什么老師要把抽出的這張牌旋轉(zhuǎn)1800嗎?(小組討論)
(反思:創(chuàng)設(shè)問題情境主要在于下面幾點理由:(1)采取從學生最熟悉的實際問題情境入手的方式,貼近學生的生活實際,讓學生認識到數(shù)學來源于生活,又服務(wù)于生活,進一步感悟到把實際問題抽象成數(shù)學問題的訓練,從而激發(fā)學生的求知欲。
(2)所有新知識的學習都以對相關(guān)具體問題情境的探索作為開始,它們是學生了解與學習這些新知識的有效方法,同時也活躍了課堂氣氛,激發(fā)學生的學習興趣。(
3)通過撲克魔術(shù)創(chuàng)設(shè)問題情境,學生獲得的答案將是豐富的。在最后交流歸納時,他們感覺到,自己在活動中“研究”的成果,對最終形成規(guī)范、正確的結(jié)論是有貢獻的,從而激發(fā)他們更加注意學習方式和“研究”方式。這也是對他們從事科學研究的情感態(tài)度的培養(yǎng)。學生勤于動手、樂于探究,發(fā)展學生實踐應(yīng)用能力和創(chuàng)新精神成為可行。)
2.教師揭示謎底。
利用“Z+Z”課件游戲演示牌面,請學生找一找哪張牌旋轉(zhuǎn)
180O后和原來牌面一樣。
3.學生通過動手分析上述撲克牌牌面、獨立思考、探究、合作交流等活動,得到答案:
(1)只有一張撲克牌圖案顛倒后和原來牌面一樣。
(2)其余撲克牌顛倒后和原來牌面不一樣,因此,老師事先按牌面的多數(shù)(少數(shù))指向整理好,把任意抽出的一張撲克牌旋轉(zhuǎn)180O后,就可以馬上在一堆撲克牌中找出它。
(反思:本環(huán)節(jié)是在撲克魔術(shù)揭密問題的具體背景下,通過學生自己的觀察、發(fā)現(xiàn)、總結(jié)、歸納,進一步理解中心對稱圖形及其特點,發(fā)展空間觀念,突出了數(shù)學課堂教學中的探索性。從而培養(yǎng)了學生觀察、概括能力,讓學生嘗到了成功的喜悅,激發(fā)了學生的發(fā)現(xiàn)思維的火花。)
(二)學生分組討論、思考探究:
1.師問:生活中有哪些圖形是與這張撲克牌一樣,旋轉(zhuǎn)180O后和原來一樣?
生舉例:線段、平行四邊形、矩形、菱形、正方形、圓、飛機的雙葉螺旋槳等。
2.你能將下列各圖分別繞其上的一點旋轉(zhuǎn)180O,使旋轉(zhuǎn)前后的圖形完全重合嗎?(先讓學生思考,允許有困難的學生利用 “
Z+Z”演示其旋轉(zhuǎn)過程。)3
.有人用“中心對稱圖形”一詞描述上面的這些現(xiàn)象,你認為這個詞是什么含義?
(對于抽象的概念教學,要關(guān)注概念的實際背景與形成過程,加強數(shù)學與生活的聯(lián)系,力求讓學生采取發(fā)現(xiàn)式的學習方式,通過“想一想”、“議一議”、 “動一動”等多種活動形式,幫助學生克服記憶概念的學習方式。)
(三)教師明晰,建立模型
1給出“中心對稱圖形”定義:在平面內(nèi),一個圖形繞某個點旋轉(zhuǎn)180O,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。
2.對比軸對稱圖形與中心對稱圖形:(列出表格,加深印象)
軸對稱圖形中心對稱圖形有一條對稱軸——直線有一個對稱中心——點沿對稱軸對折繞對稱中心旋轉(zhuǎn)1880O對折后與原圖形重合
旋轉(zhuǎn)后與原圖形重合
(四)解釋、應(yīng)用與拓廣
1.教師用“Z+Z
智能教育平臺”演示旋轉(zhuǎn)過程,驗證上述圖形的中心對稱性,引導學生討論、探究中心對稱圖形的性質(zhì)。
(利用計算機《Z+Z智能教育平臺》技術(shù),通過圖形旋轉(zhuǎn)給出中心對稱圖形的一個幾何解釋,目的是使學生對中心對稱圖形有一個更直觀的認識。)
2.探究中心對稱圖形的性質(zhì)
板書:中心對稱圖形上的每一對對應(yīng)點所連成的線段都被對稱中心平分。
3.師問:怎樣找出一個中心對稱圖形的對稱中心?
(兩組對應(yīng)點連結(jié)所成線段的交點)
4平行四邊形是中心對稱圖形嗎?若是,請找出其對稱中心,你怎樣驗證呢?
學生分組討論交流并回答。
討論:根據(jù)以上的驗證方法,你能驗證平行四邊形的哪些性質(zhì)?學生分組討論交流并回答。
討論:根據(jù)以上的驗證方法,你能驗證平行四邊形的哪些性質(zhì)?
5逆向問題:如果一個四邊形是中心對稱圖形,那么這個四邊形一定是平行四邊形嗎?
學生討論回答。
6你還能找出哪些多邊形是中心對稱圖形?
(反思:合作學習是新課程改革中追求的一種學習方法,但合作學習必須建立在學生的獨立探索的基礎(chǔ)上,否則合作學習將會流于形式,不能起到應(yīng)有的效果,所于我在上課時強調(diào)學生先獨立思考,再由當天的小組長組織進行,并由當天的記錄員記錄小組成員的'活動情況(每個小組有一張課堂合作學習參考表,見附錄)。)
(五)拓展與延伸
1中國文字豐富多彩、含義深刻,有許多是中心對稱的,你能找出幾個嗎?
2.正六邊形的對稱中心怎樣確定?
(六)魔術(shù)表演:
1.師:把4張撲克牌放在桌上,然后把某一張撲克牌旋轉(zhuǎn)180o后,得到右圖,你知道哪一張撲克被旋轉(zhuǎn)過嗎?
2.學生小組活動:
以“引入”為例,在一副撲克牌中,拿出若干張撲克牌設(shè)計魔術(shù),相互之間做游戲。
(新教材的編寫,著重突出了用數(shù)學活動呈現(xiàn)教學內(nèi)容,而不是以例題和習題的形式出現(xiàn)。通過多種形式的實踐活動,讓學生親歷探究與現(xiàn)實生活聯(lián)系密切的學習過程,使學生在合作中學習,在競爭收獲,共同分享成功的喜悅,同時能調(diào)節(jié)課堂的氣氛,培養(yǎng)學生之間的情感。只有這樣,學生的創(chuàng)新意識和動手意識才會充分地發(fā)揮出來。)
四、案例小結(jié)
《數(shù)學課程標準》提出:“實踐活動是培養(yǎng)學生進行主動探索與合作交流的重要途徑。”“教師應(yīng)該充分利用學生已有的生活經(jīng)驗,隨時引導學生把所學的數(shù)學知識應(yīng)用到生活中去,解決身邊的數(shù)學問題,了解數(shù)學在現(xiàn)實生活中的作用,體會學習數(shù)學的重要性。”這兩段話,正體現(xiàn)了新教材的重要變化——關(guān)注學生的生活世界,學習內(nèi)容更加貼近實際,同時強調(diào)了數(shù)學教學讓學生動手實踐的重要意義和作用。
現(xiàn)實性的生活內(nèi)容,能夠賦予數(shù)學足夠的活力和靈性。對許多學生來說,“撲克”和“游戲”是很感興趣的內(nèi)容,因此,也具有現(xiàn)實性,即回歸生活(玩撲克牌)——讓學生感知學習數(shù)學可以讓生活增添許多樂趣,同時也讓學生感知到數(shù)學就在我們身邊,學生學習的數(shù)學應(yīng)當是生活中的數(shù)學,是學生“自己身邊的數(shù)學”。這樣,數(shù)學來源于生活,又必須回歸于生活,學生就能在游戲中學得輕松愉快,整個課堂顯得生動活潑。
初二數(shù)學上冊教案11
教學目的:
1、在具體的操作活動中,讓學生認、讀、寫11-20各數(shù),掌握20以內(nèi)數(shù)的順序,初步建立數(shù)位的概念。
2、結(jié)合學生的實際情況,讓學生填寫算式。
3、在教學中滲透數(shù)的順序,并進行社會秩序教育。
4、學會與人合作,體會計算的多樣化,發(fā)展學生思維。
教學重點:掌握20以內(nèi)數(shù)的順序。
教學難點:初步建立數(shù)的概念
教學準備:每組一個數(shù)位計數(shù)器及40-50根小棒等。
教學方法:抓問題,用多種游戲,把抽象的'數(shù)位具體化。
教學步驟:
一、創(chuàng)設(shè)情景,尋找關(guān)鍵問題
1、數(shù)學課研究數(shù)學問題,一些小棒會有什么數(shù)學問題。
。繌堊雷影l(fā)40-50根小棒,玩小棒時間為3-5分鐘)
2、你發(fā)現(xiàn)了什么數(shù)學問題。
(目的:練習20以內(nèi)數(shù)的順序,也可以在玩小棒中發(fā)現(xiàn)十根捆一捆)
3、游戲,看誰的手小巧。
老師報數(shù),學生用棒子表示,討論:快的同學的訣竅。
出示:十根可以捆一捆。
再進行游戲,讓學生習慣中把1捆當作10根用。
4、完成:
。ǎ﹤一()個十
試一試,在計數(shù)器拔出10
個位只有幾顆珠子,怎么辦?(10個一是1個10)
在個位拔上一顆珠子,表示1個十,也表示10個一。
二、自主合作,解決數(shù)位順序。
在解決了10是1個十也是10個一后,還能過度試一試在計數(shù)器上表示。接下來就是讓學生通過自主合作,數(shù)位,組成和算式結(jié)合,理解11-20各數(shù)。
。薄11-20各數(shù)在計數(shù)器上怎么表示呢?
問題提出后,可以組織學生討論交流,并加以解決,并結(jié)合p68的圖示表達自己的想法,學生之間互相交流,實現(xiàn)生生互動。
(這兒注意11-20的表達多樣,只要求至少一樣,方法選擇,方法應(yīng)用應(yīng)由學生通過自主交流來確定。)
2、
。眰十,1個一是1110+1=11
10和11,十位上是1,沒有變,個位由0變成1,就是11。
3、15、19、20的數(shù)位可重點檢查。
。20的數(shù)位可由10-20,也可19-20來描述。)
4、小結(jié),從右邊起,第一位是個位,第二位是十位,數(shù)位不一樣,數(shù)也不一樣,十位上1表示1個十,個位上1表示1個一。
5、練習:(口算)
10+910+810+710+610+5
10+410+39+108+107+10
6+105+104+103+10
三、實踐應(yīng)用,實現(xiàn)知識延伸
1、尋找粗心丟失的數(shù)。
游戲報數(shù)。(報數(shù)時丟一些中間數(shù))
2、開火車順數(shù)
游戲:數(shù)數(shù)(順數(shù)和倒數(shù))
3、拔珠游戲(師生――生生)
報數(shù)13,拔13并寫出13,同時說13的含義,還可畫珠。
4、p691-6自己完成。
四、課外實踐,拓展知識應(yīng)用。
1、完成10-20各數(shù)數(shù)位圖及小棒圖。
2、和父母互說10-20各數(shù)組成。
課后評析:
初二數(shù)學上冊教案12
教學目標
1.等腰三角形的概念. 2.等腰三角形的性質(zhì). 3.等腰三角形的概念及性質(zhì)的應(yīng)用.
教學重點:
1.等腰三角形的概念及性質(zhì).
2.等腰三角形性質(zhì)的應(yīng)用.
教學難點:
等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用.
教學過程
、.提出問題,創(chuàng)設(shè)情境
在前面的學習中,我們認識了軸對稱圖形,探究了軸對稱的性質(zhì),并且能夠作出一個簡單平面圖形關(guān)于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設(shè)計一些美麗的圖案.這節(jié)課我們就是從軸對稱的角度來認識一些我們熟悉的幾何圖形.來研究:①三角形是軸對稱圖形嗎?②什么樣的三角形是軸對稱圖形?
有的三角形是軸對稱圖形,有的三角形不是.
問題:那什么樣的三角形是軸對稱圖形?
滿足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形.
我們這節(jié)課就來認識一種成軸對稱圖形的三角形──等腰三角形.
、.導入新課: 要求學生通過自己的思考來做一個等腰三角形.
作一條直線L,在L上取點A,在L外取點B,作出點B關(guān)于直線L的對稱點C,連結(jié)AB、BC、CA,則可得到一個等腰三角形.
等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角.
思考:
1.等腰三角形是軸對稱圖形嗎?請找出它的對稱軸.
2.等腰三角形的兩底角有什么關(guān)系?
3.頂角的'平分線所在的直線是等腰三角形的對稱軸嗎?
4.底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?
結(jié)論:等腰三角形是軸對稱圖形.它的對稱軸是頂角的平分線所在的直線.因為等腰三角形的兩腰相等,所以把這兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線.
要求學生把自己做的等腰三角形進行折疊,找出它的對稱軸,并看它的兩個底角有什么關(guān)系.
沿等腰三角形的頂角的平分線對折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個等腰三角形的兩個底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高.
由此可以得到等腰三角形的性質(zhì):
1.等腰三角形的兩個底角相等(簡寫成等邊對等角).
2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作三線合一).
由上面折疊的過程獲得啟發(fā),我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質(zhì).同學們現(xiàn)在就動手來寫出這些證明過程).
初二數(shù)學上冊教案13
初二上冊數(shù)學知識點總結(jié):等腰三角形
一、等腰三角形的性質(zhì):
1、等腰三角形兩腰相等.
2、等腰三角形兩底角相等(等邊對等角)。
3、等腰三角形的頂角角平分線、底邊上的中線,底邊上的`高相互重合.
4、等腰三角形是軸對稱圖形,對稱軸是三線合一(1條)。
5、等邊三角形的性質(zhì):
、俚冗吶切稳叾枷嗟.
、诘冗吶切稳齻內(nèi)角都相等,都等于60°
、鄣冗吶切蚊織l邊上都存在三線合一.
、艿冗吶切问禽S對稱圖形,對稱軸是三線合一(3條).
6.基本判定:
、诺妊切蔚呐卸ǎ
、儆袃蓷l邊相等的三角形是等腰三角形.
、谌绻粋三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊).
、频冗吶切蔚呐卸ǎ
、偃龡l邊都相等的三角形是等邊三角形.
②三個角都相等的三角形是等邊三角形.
、塾幸粋角是60°的等腰三角形是等邊三角形.
初二數(shù)學上冊教案14
一、教學目標
1、了解二次根式的意義;
2、掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;
3、掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;
4、通過二次根式的計算培養(yǎng)學生的邏輯思維能力;
5、通過二次根式性質(zhì)和的介紹滲透對稱性、規(guī)律性的數(shù)學美、
二、教學重點和難點
重點:(1)二次根的`意義;(2)二次根式中字母的取值范圍、
難點:確定二次根式中字母的取值范圍、
三、教學方法
啟發(fā)式、講練結(jié)合、
四、教學過程
(一)復習提問
1、什么叫平方根、算術(shù)平方根?
2、說出下列各式的意義,并計算
(二)引入新課
新課:二次根式
定義:式子叫做二次根式、
對于請同學們討論論應(yīng)注意的問題,引導學生總結(jié):
(1)式子只有在條件a≥0時才叫二次根式,是二次根式嗎?呢?
若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分、
(2)是二次根式,而,提問學生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的“外在形態(tài)”、請學生舉出幾個二次根式的例子,并說明為什么是二次根式、下面例題根據(jù)二次根式定義,由學生分析、回答、
例1當a為實數(shù)時,下列各式中哪些是二次根式?
例2 x是怎樣的實數(shù)時,式子在實數(shù)范圍有意義?
解:略、
說明:這個問題實質(zhì)上是在x是什么數(shù)時,x-3是非負數(shù),式子有意義、
初二數(shù)學上冊教案15
教學目的:
1、在二次根式的混合運算中,使學生掌握應(yīng)用有理化分母的方法化簡和計算二次根式;
2、會求二次根式的代數(shù)的值;
3、進一步提高學生的綜合運算能力。
教學重點:在二次根式的混合運算中,靈活選擇有理化分母的方法化簡二次根式
教學難點:正確進行二次根式的混合運算和求含有二次根式的代數(shù)式的值
教學過程:
一、二次根式的混合運算
例1 計算:
分析:(1)題是二次根式的加減運算,可先把前三個二次根式化最簡二次根式,把第四式的分母有理化,然后再進行二次根式的加減運算。
(2)題是含乘方、加、減和除法的混合運算,應(yīng)按運算的順序進行計算,先算括號內(nèi)的式子,最后進行除法運算。注意的計算。
練習1:P206 / 8--① P207 / 1①②
例2 計算
問:計算思路是什么?
答:先把第一人的括號內(nèi)的式子通分,把第二個括號內(nèi)的式子的分母有理化,再進行計算。
二、求代數(shù)式的值。 注意兩點:
(1)如果已知條件為含二次根式的式子,先把它化簡;
(2)如果代數(shù)式是含二次根式的式子,應(yīng)先把代數(shù)式化簡,再求值。
例3 已知,求的值。
分析:多項式可轉(zhuǎn)化為用與表示的式子,因此可根據(jù)已知條件中的及的值。求得與的值。在計算中,先把及的式了有理化分母?墒褂嬎愫啽。
例4 已知,求的值。
觀察代數(shù)式的特點,請說出求這個代數(shù)式的.值的思路。
答:所求的代數(shù)式中,相減的兩個式子的分母都含有二次根式,為化去它們的分母中的根號,可以分別先把各自的分母有理化或進行]通分,把這個代數(shù)式化簡后,再求值。
三、小結(jié)
1、對于二次根式的混合混合運算。應(yīng)根據(jù)二次根式的加、減、乘除和乘方運算的順序進行,即先進行乘方運算,再進行乘、除運算,最后進行加、減運算。如果有括號,先進行括號內(nèi)的式子的運算,運算結(jié)果要化為最簡二次根式。
2、在代數(shù)式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應(yīng)先把它們化簡,然后再求值。
3、在進行二次根式的混合運算時,要根據(jù)題目特點,靈活選擇解題方法,目的在于使計算更簡捷。
四、作業(yè)
P206 / 7 P206 / 8---②③
【初二數(shù)學上冊教案】相關(guān)文章:
初二數(shù)學上冊教案11-14
初二上冊數(shù)學教案11-11
初二數(shù)學上冊教案 (15篇)12-06
初二數(shù)學上冊教案 15篇12-05
初二數(shù)學上冊教案(15篇)11-16
初二數(shù)學上冊教案15篇11-16
初二數(shù)學上冊教案精選15篇12-12
初二數(shù)學上冊教案通用15篇12-12
初二數(shù)學上冊教案(合集15篇)12-10