- 相關(guān)推薦
數(shù)學說課稿《概率》
在教學工作者開展教學活動前,時常要開展說課稿準備工作,說課稿可以幫助我們提高教學效果。說課稿應(yīng)該怎么寫才好呢?以下是小編為大家收集的數(shù)學說課稿《概率》,供大家參考借鑒,希望可以幫助到有需要的朋友。
數(shù)學說課稿《概率》1
一、教材分析
1、教材的地位與作用
模擬方法是北師大版必修3第三章概率第3節(jié),也是必修3最后一節(jié),本節(jié)內(nèi)容是在學習了古典概型的基礎(chǔ)上,用模擬方法估計一些用古典概型解決不了的實際問題的概率,使學生初步體會幾何概型的意義;而模擬試驗是培養(yǎng)學生動手能力、小組合作能力、和試驗分析能力的好素材。
2、教學重點與難點
教學重點:借助模擬方法來估計某些事件發(fā)生的概率;
幾何概型的概念及應(yīng)用
體會隨機模擬中的統(tǒng)計思想:用樣本估計總體。
教學難點:設(shè)計和操作一些模擬試驗,對從試驗中得出的數(shù)據(jù)進行統(tǒng)計、分析;
應(yīng)用隨機數(shù)解決各種實際問題。
二、教學目標:
1、知識目標:使學生了解模擬方法估計概率的實際應(yīng)用,初步體會幾何概型的意義;并能夠運用模擬方法估計概率。
2、能力目標:培養(yǎng)學生實踐能力、協(xié)調(diào)能力、創(chuàng)新意識和處理數(shù)據(jù)能力以及應(yīng)用數(shù)學意識。
3、情感目標:鼓勵學生動手試驗,探索、發(fā)現(xiàn)規(guī)律并解決實際問題,激發(fā)學生學習的興趣。
三、過程分析
1、創(chuàng)設(shè)良好的學習情境,激發(fā)學生學習的欲望
從學生的生活經(jīng)驗和已有知識背景出發(fā),提出用學過知識不能解決的問題:房間的紗窗破了一個小洞,隨機向紗窗投一粒小石子,估計小石子從小洞穿過的概率。能用古典概型解決嗎?為什么?從而引起認知矛盾,激發(fā)學生學習、探究的興趣。
2、以實驗和問題引導學習活動,使學生經(jīng)歷“數(shù)學化”、“再創(chuàng)造”的過程
通過兩個實驗:(1)取一個矩形,在面積為四分之一的.部分畫上陰影,隨機地向矩形中撒一把豆子(我們數(shù)100粒),統(tǒng)計落在陰影內(nèi)的豆子數(shù)與落在矩形內(nèi)的總豆子數(shù),觀察它們有怎樣的比例關(guān)系?(2)反過來,取一個已知長和寬的矩形,隨機地向矩形中撒一把豆子,統(tǒng)計落在陰影內(nèi)的豆子數(shù)與落在矩形內(nèi)的總豆子數(shù),你能根據(jù)豆子數(shù)得到什么結(jié)論?
讓學生分組合作,利用課前準備的材料進行試驗、討論、分析,使學生主動進入探究狀態(tài),充分調(diào)動學生學習積極性,使他們感受到探討數(shù)學問題的樂趣,培養(yǎng)學生與他人合作交流的能力以及團隊精神。根據(jù)各小組試驗結(jié)果,提出問題,引導學生進行猜想,得出結(jié)論:
使學生了解結(jié)論產(chǎn)生的背景,輕易地理解了這個結(jié)論,并培養(yǎng)學生數(shù)據(jù)分析能力、抽象概括能力。讓他們感覺到數(shù)學定理、結(jié)論其實離他們很近,增強學生學習的動力和信心。
3、類比遷移,注重數(shù)學與實際聯(lián)系,發(fā)展學生應(yīng)用意識和能力
(1)求不規(guī)則圖形面積
如圖,曲線y=-x2+1與x軸,y軸圍成區(qū)域A,
如何求陰影部分面積?
通過把不規(guī)則圖形放在規(guī)則的、
易求面積的圖形中,利用模擬方法
求不規(guī)則圖形面積,在解決問題時
學生提出了借助不同圖形,教師要
引導學生用最佳圖形。讓學生把不熟
悉的問題轉(zhuǎn)化為熟悉的問題情
境,引導學生利用已有知識解決新
的問題,培養(yǎng)學識知識應(yīng)用、類比遷移的能力。
本例通過介紹用計算機產(chǎn)生隨機數(shù)來模擬,使學生了解現(xiàn)代信息技術(shù)的應(yīng)用,了解另一種模擬方法。
(2)估計圓周率π的值
讓學生設(shè)計模擬試驗,估計圓周率π的值,培養(yǎng)學生應(yīng)用數(shù)學的意識,使學習過程成為學生的再創(chuàng)造過程。達到本課的目標,使學生了解模擬方法估計概率的實際應(yīng)用,能夠運用模擬方法估計概率。通過設(shè)計和操作模擬試驗,對得出數(shù)據(jù)進行統(tǒng)計、分析,解決本課難點。讓學生體驗數(shù)學的發(fā)現(xiàn)和創(chuàng)造過程,發(fā)展他們的創(chuàng)新意識。同時通過對介紹古代數(shù)學家祖沖之,對學生進行愛國主義教育,培養(yǎng)學生愛國情操。
(3)幾何概型概率計算方法
、偻ㄟ^問題:如果正方形面積不變,但形狀改變,所得比例發(fā)生變化嗎?
引出幾何概型的概念、特點和計算公式
把試驗的結(jié)論上升到理論,使學生的認識有一個從試驗到理論的升華,使學生掌握基本概念,并運用理論解決問題,使學生的認識有一個質(zhì)的飛躍,
、诶喝鐖D,在墻上掛著一塊邊長為16cm的正方形木板,
上面畫了小、中、大三個同心圓,半徑分別為2cm、4cm、
6cm,某人站在3m處向此板投鏢,設(shè)投鏢擊中線上或沒有
投中木板時都不算,可重投。
問:(1)投中大圓內(nèi)的概率是多少?
(2)投中小圓和中圓形成的圓環(huán)的概率是多少?
配套習題是知識的直接運用,有助于學生鞏固新學的知識,使學生掌握基本知識和技能。
、弁ㄟ^介紹本章開篇中“蒲豐投針”問題,利用計算機動態(tài)顯示投針試驗,使學生對此試驗有初步了解,開闊學生視野,體現(xiàn)數(shù)學的文化價值,留給學生課后探究的空間。
4、通過實際問題:小明家的晚報在下午5:30~6:30之間的任何一個時間隨機地被送到,小明一家人在下午6:00~7:00之間的任何一個時間隨機地開始晚餐。(1)你認為晚報在晚餐開始之前被送到和在晚餐開始之后被送到哪一種可能性更大?(2)晚報在晚餐開始之前被送到的概率是多少?
引導學生利用轉(zhuǎn)盤設(shè)計試驗,并分組進行試驗,鼓勵學生自主探索與合作交流,培養(yǎng)學生創(chuàng)新意識,并使學生了解模擬形式的多樣化,并通過模擬進一步熟悉試驗的操作,提高動手能力和小組協(xié)調(diào)能力。通過問題拓展,介紹用理論解決的方法,激起學生再探究的欲望,留給學生課后思考的空間。
4、課堂小結(jié)
由學生總結(jié)本節(jié)課所學習的主要內(nèi)容,讓學生對所學內(nèi)容有全面、系統(tǒng)的認識。
四、教法、學法分析
本節(jié)課是在采用信息技術(shù)和數(shù)學知識整合的基礎(chǔ)上從生活實際中提煉數(shù)學素材,使學生在熟悉的背景下、在認知沖突中展開學習,通過試驗活動的開展,使學生在試驗、探究活動中獲取原始數(shù)據(jù),進而通過數(shù)與形的類比,在老師的引導、啟發(fā)下感悟出模擬的數(shù)學結(jié)論,通過結(jié)論的運用提升為數(shù)學模型并加以應(yīng)用,它實現(xiàn)了學生在學習過程中對知識的探究、發(fā)現(xiàn)的創(chuàng)作經(jīng)歷,調(diào)動了學生學習的積極性和主動性,同學們在親身經(jīng)歷知識結(jié)論的探究中獲得了對數(shù)學價值的新認識。
五、評價分析
本課是使學生通過試驗掌握用模擬方法估計概率,主要是用分組合作試驗、探究方法研究數(shù)學知識,因此評價時更注重探究和解決問題的全過程,鼓勵學生的探索精神,引導學生對問題的正確分析與思考,關(guān)注學生提出問題、參與解決問題的全過程,關(guān)注學生的創(chuàng)新精神和實踐能力。
數(shù)學說課稿《概率》2
我說課的題目是《概率的意義》,它是人教版九年級上冊第二十五章概率初步第一節(jié)的內(nèi)容。下面我從將從背景分析、目標分析、過程分析、教法分析、評價分析五個方面對本節(jié)課的設(shè)計進行說明。
一、背景分析
1、教材分析:
按照教學內(nèi)容交叉編排、螺旋上升的方式,本章是在統(tǒng)計的基礎(chǔ)上展開對概率的研究的,而本節(jié)又是從頻率的角度來解釋概率,其核心內(nèi)容是介紹實驗概率的意義,即當試驗次數(shù)較大時,頻率漸趨穩(wěn)定的那個常數(shù)就叫概率。本節(jié)課的學習,將為后面學習理論概率的意義和用列舉法求概率打下基礎(chǔ)。因此,我認為概率的正確理解和它在實際中的應(yīng)用是本次教學的重點。
2、學情分析:
1)、學生初學概率,面對概率意義的描述,他們會感到困惑:概率是什么,是否就是頻率?因此辯證理解頻率和概率的關(guān)系是教學中的一大難點。
2)、由于本節(jié)課內(nèi)容非常貼近生活,因此豐富的問題情境會激發(fā)學生濃厚的興趣,但學生過去的生活經(jīng)驗會對這節(jié)課的學習帶來障礙,因此正確理解每次試驗結(jié)果的隨機性與大量隨機試驗結(jié)果的規(guī)律性是教學中的又一大難點。
二、目標分析
根據(jù)背景分析和學生的認知特點,我將本節(jié)課的教學目標設(shè)置為:
知識技能:
1)理解概率的含義并能通過大量重復試驗確定概率。
2)能用概率知識正確理解和解釋現(xiàn)實生活中與概率相關(guān)的問題。
過程方法:
1)經(jīng)歷用試驗的方法獲得概率的過程,培養(yǎng)學生的合作交流意識和動手能力。
2)在由“試驗形成概率的定義”的過程中培養(yǎng)學生分析問題能力和抽象思維能力。
情感態(tài)度與價值觀:
1)利用生活素材和數(shù)學史上著名例子,激發(fā)學生學習數(shù)學的熱情和興趣。
2)結(jié)合隨機試驗的隨機性和規(guī)律性,讓學生了解偶然性寓于必然性之中的辯證唯物主義思想。
三、過程分析
為達到上述教學目標,教學中,我設(shè)置五個教學環(huán)節(jié)(見流程圖)。
活動1:復習鞏固引入新知
活動2:創(chuàng)設(shè)情境實驗探究
活動3:形成概念深化認識
活動4:變式訓練 拓展提高
活動5:小結(jié)歸納課堂延伸
下面我重點談?wù)務(wù)麄教學過程:
1、復習鞏固 引入新知
多媒體展示圖片和問題:下列事件中,哪些是隨機事件,哪些是必然發(fā)生的,哪些是不可能發(fā)生的。通過生動的實物圖片和生活情境,一方面突出復習隨機事件的判斷,另一方面,可引出本節(jié)課的中心問題:隨機事件發(fā)生的可能性有多大呢?如(遇上紅燈、生個兒子、天氣晴好)。自然地把學生引入到隨機事件的概率的探究過程中來。
2、創(chuàng)設(shè)情境 實驗探究
要研究隨機事件的概率,拋擲硬幣的試驗既典型又方便,但如果教師簡單直敘說要拋擲硬幣,難免讓學生覺得被老師牽著走,興趣不大。在這里,我借助于學生具有的課外知識——對世界杯的了解,讓學生先看到世界杯的冠軍獎杯,自然想到今年德國世界杯足球比賽,再給一幅圖,讓學生猜想到這是在由拋擲硬幣決定哪個隊先開球。然后,順勢提問:這種決定方法對比賽雙方公平嗎?為什么?
這個問題,問到了學生的心坎上,直覺判斷:公平?墒,為什么呢?學生暫時答不上來。怎么辦?能否用試驗來驗證?學生頗感懷疑。
無獨有偶,歷史上有幾位著名的數(shù)學家都做過這樣的試驗,我們今天拋擲的結(jié)果會與他們一致嗎?
第一步:分組試驗
將全班分十組,要求每組擲一枚硬幣60次,并把試驗數(shù)據(jù)記錄在表格中。
分析試驗結(jié)果:
提問①:各小組正面朝上的頻率一樣嗎?是否為0.5?
提問②:如果把全班十組結(jié)果進行累計,正面朝上的頻率會有什么規(guī)律?
設(shè)計意圖:
通過提問1:引導學生認識到隨機事件的發(fā)生具有偶然性。
通過提問2:引導學生發(fā)現(xiàn)在次數(shù)逐漸增大的情況下,頻率數(shù)值漸趨穩(wěn)定。
第二步:比較試驗
試驗者拋擲次數(shù)(n)正面向上的
次數(shù)(頻數(shù)m)頻率()
棣莫弗204810610.5181
布豐404020480.5069
費勒1000049790.4979
皮爾遜1200060190.5016
皮爾遜24000120120.5005
這個表讓學生既了解到一些數(shù)學家的故事、感受到他們?yōu)樽非笳胬矶幌r間的精神(比如:皮爾遜投了24000次,可想而知需要大量時間),又驚喜的看到:幾位數(shù)學家的試驗結(jié)果跟我們今天的試驗結(jié)果大致相同----大量試驗次數(shù)下頻率數(shù)值穩(wěn)定于0.5。學生很有成就感,老師趁此鼓勵:今天,你們就可以做出數(shù)學家做的事,那么明天,你們就是未來的數(shù)學家。
第三步:模擬試驗
輸入次數(shù),電腦很快地拋擲硬幣,得到正面朝上的頻數(shù)和頻率,并同時畫出了頻率隨試驗次數(shù)增大的曲線圖。
學生一方面驚嘆于信息技術(shù)為數(shù)學研究帶來的方便(像這樣的拋擲硬幣,省時省力、直觀形象),另一方面認識到:盡管是隨機試驗,盡管每一次事件的發(fā)生具有偶然性,但隨著試驗次數(shù)的增加,正面朝上的頻率曲線越來越平穩(wěn):即穩(wěn)定于0.5。
以上分三步實施的試驗說明:“正面向上”的'頻率穩(wěn)定于0.5,“反面向上”的頻率也穩(wěn)定于0.5。由兩個頻率穩(wěn)定到的常數(shù)相等說明兩者發(fā)生的可能性相等,從而驗證了猜想,判斷公平的直覺是對的。
到這時,學生已經(jīng)看到,大量重復試驗下,任意拋擲硬幣“正面朝上”這個隨機事件發(fā)生的頻率逐漸穩(wěn)定到的常數(shù)刻畫了隨機事件發(fā)生的可能性的大小。
3、形成概念 深化認識
一般地,在大量重復試驗中,如果事件A發(fā)生的頻率會穩(wěn)定在某個常數(shù)p附近,那么這個常數(shù)p叫做事件A的概率,記作P(A)=p。其中m是事件A發(fā)生的頻數(shù),n是試驗次數(shù)。
思考①:概率的取值范圍是什么呢?
大部分學生能得出 0
思考②:定義中的“頻率”和“概率”有何區(qū)別?
結(jié)合投幣試驗,同學知道各小組試驗算出的頻率不一定等于概率。區(qū)別就是:頻率不一定等于概率,概率是頻率趨于穩(wěn)定的那個值。
你會求嗎?
例:對某電視機廠生產(chǎn)的電視機進行抽樣檢測的數(shù)據(jù)如下:
抽取臺數(shù)501002003005001000
優(yōu)等品數(shù)4592192285478954
頻 率0.900.920.960.950.960.95
1)計算表中優(yōu)等品的頻率(精確到0.01);
2)該廠生產(chǎn)的電視機優(yōu)等品的概率是多少(精確到0.01)?
這個例題,是利用抽樣檢測這種大量重復試驗,讓學生先計算優(yōu)等品的頻率,然后觀察頻率穩(wěn)定在哪個常數(shù)附近,從而選取這個常數(shù)作為優(yōu)等品的概率。通過例題,使學生更具體地理解概率,鞏固概率和頻率的關(guān)系即頻率不一定等于概率,比如頻率有0.92、0.96,概率為0.95。突破難點1。同時也讓學生看到進行大量重復試驗是確定概率的一種方法。
4、變式訓練 拓展提高
聽兩段情境對話,分組討論對錯并說明理由:
情境1):甲——我知道擲硬幣時,“正面向上”的概率是0.5。
乙——噢,那我連擲硬幣10次,一定會有5次正面向上。
2):甲——天氣預(yù)報說明天降水概率為90%。
乙——我知道了,明天肯定會下雨,要不然就是天氣預(yù)報不準。
對這兩個情境,判斷對與錯并不難,難就難在如何準確的用概率知識理解。學生討論時,教師深入各組,及時點撥,澄清學生可能存在的錯誤認識。
設(shè)計意圖:情境1強調(diào)概率是針對大量試驗而言的,大量試驗反映的規(guī)律并非在每次試驗中一定存在。情境2突出概率從數(shù)量上刻畫了一個隨機事件發(fā)生的可能性大小。用這兩個情境使學生正確理解大量隨機試驗結(jié)果的規(guī)律性和每次試驗結(jié)果的隨機性,突破難點2。
5、小結(jié)歸納 課堂延伸
小結(jié)歸納:
1)學生分組討論,談本次課收獲與疑問,學生之間相互補充,相互釋疑。
2)教師表揚課堂上中參與積極、表現(xiàn)精彩的小組和個人。
3)教師引導學生再一次理解概率的意義,揭示頻率與概率的聯(lián)系與區(qū)別。
課堂上的時間總是有限的,而知識的觸覺是多方位的。為鞏固本課知識,多角度提升能力,我設(shè)置了課堂延伸:
1)、P144 5,6題。
——進一步鞏固由大量重復試驗所得數(shù)據(jù)計算頻率進而確定概率的方法。
2)、上網(wǎng)搜索并閱讀有關(guān)姚明參加NBA以來罰球數(shù)據(jù)的統(tǒng)計,并根據(jù)你搜索到的數(shù)據(jù),指出姚明在NBA比賽中罰球命中的概率。
——提高學生利用網(wǎng)絡(luò)資源的意識和處理信息能力,讓學生再一次感悟概率的意義和在生活中的應(yīng)用。
四、方法分析
1、為了激活學生的課堂思維,體會隨機現(xiàn)象特點,我采用情境激趣法,營造學習氛圍。
2、為了讓學生把對隨機事件的直覺思維過渡為理性認識,我采用實驗探究法,并且分三步實施:分組試驗、比較試驗、模擬試驗,讓學生更清晰地看到隨著試驗次數(shù)的增加,頻率趨于穩(wěn)定,從而更好的理解概率意義,突出重點。
3、為了突破難點——理解好頻率與概率、隨機性與規(guī)律性的關(guān)系,我采用小組討論法和啟發(fā)點撥法。
4、教學手段方面:利用多媒體技術(shù),引用情境對話、制作電腦模擬試驗,讓學生感受信息技術(shù)為數(shù)學學習帶來的方便,突出表現(xiàn)數(shù)學內(nèi)在美。
五、評價分析
1、教學內(nèi)容上:我關(guān)注教材的變化,概率統(tǒng)計內(nèi)容在新教材里地位得到加強,但也有一個逐步滲透學習的過程。
熟悉問題情境→激發(fā)學習動機
易誤解的例子→加強概念理解
著名數(shù)學史料→延續(xù)求知熱情
2、教學理念上:始終貫徹以學生為中心的教育理念。關(guān)注學生的認知過程,重視學生的合作與討論,隨時發(fā)現(xiàn)、肯定學生的閃光點,讓學生及時享受成功的愉悅。同時,結(jié)合學生暴露出的思想或方法上的問題,給予適時點撥。
3、教學預(yù)想:課堂是一個動態(tài)的過程,為使嚴謹?shù)恼n堂更具彈性,我還做了其他準備,比如氣象部門怎樣計算得出降水概率,姚明參加NBA以來罰球數(shù)據(jù)的原始資料及分析等學生感興趣的且與本節(jié)課相關(guān)的問題,以便適時的給學生拓寬知識,讓學生更充分地感受到數(shù)學知識在生產(chǎn)、生活、娛樂、服務(wù)等方面的廣泛應(yīng)用。
數(shù)學說課稿《概率》3
一、教材分析
概率是高中數(shù)學的新增內(nèi)容,它自成體系,是數(shù)學中一個較獨立的學科分支,與以往所學的數(shù)學知識有很大的區(qū)別,但與人們的日常生活密切相關(guān),而且對思維能力有較高要求,在高考中占有重要地位。
本節(jié)內(nèi)容在本章節(jié)的地位:《條件概率》(第一課時)是高中課程標準實驗教材數(shù)學選修2—3第二章第二節(jié)的內(nèi)容,它在教材中起著承前啟后的作用,一方面,可以鞏固古典概型概率的計算方法,另一方面,為研究相互獨立事件打下良好的基礎(chǔ)。
教學重點、難點和關(guān)鍵:教學重點是條件概率的定義、計算公式的.推導及條件概率的計算;難點是條件概率的判斷與計算;教學關(guān)鍵是數(shù)學建模。
二、教學目標
根據(jù)上述教材分析,考慮到學生已有的認知結(jié)構(gòu)心理特征,我制定如下教學目標:
基礎(chǔ)知識目標——掌握條件概率的定義及計算方法
思想方法目標——歸納、類比的方法和建模思想
能力培養(yǎng)目標——培養(yǎng)學生思維的靈活性及知識的遷移能力
根據(jù)這兩年高考改卷的反饋信息,考生在概率題的書面表達上丟分的情況是很普遍的,因此本節(jié)課還想達到:
表達能力目標——培養(yǎng)學生書面表達的嚴謹和簡潔
個性品質(zhì)目標——培養(yǎng)學生克服“心欲通而不能,口欲講而不會”的困難,提高探索問題的積極性和學習數(shù)學的興趣
三、教法
在教學中,不僅要使學生“知其然”,而且要使學生“知其所以然”。為了體現(xiàn)以生為本,遵循學生的認知規(guī)律,堅持以教師為主導,學生為主體的教學思想,體現(xiàn)循序漸進的教學原則,我采用引導發(fā)現(xiàn)法、分析討論法的教學方法,通過提問、啟發(fā)、設(shè)問、歸納、講練結(jié)合、適時點撥的方法,讓學生的思維活動在老師的引導下層層展開,讓學生大膽參與課堂教學,使他們“聽”有所“思”,“練”有所“獲”,使傳授知識與培養(yǎng)能力融為一體。
四、學法
以建構(gòu)主義為指導,采用以啟發(fā)式教學為主,同時結(jié)合師生共同討論、歸納的教學方法,根據(jù)學生的認知水平,為課堂設(shè)計了:
①創(chuàng)設(shè)情景——引入概念
、陬惐韧茖А贸龉
、塾懻撗芯俊獨w納方法
④即時訓練——鞏固方法
、菘偨Y(jié)反思——提高認識
⑥作業(yè)布置——評價反饋
六個層次的學法,它們環(huán)環(huán)相扣,層層深入,從而順利完成教學目標。
五、教學過程
創(chuàng)設(shè)情景——引入概念
首先引入兩個實際問題,激發(fā)學生的興趣。
【實例1】3張獎券中只有1張能中獎,現(xiàn)分別由3名同學無放回地抽取,最后一名同學抽到中獎獎券的概率是多少?若第一個同學沒有抽到中獎獎券,則最后一名同學抽到中獎獎券的概率是多少?
【實例2】有5道快速搶答題,其中3道理科題,2道文科題,從中無放回地抽取兩次,每次抽取1道題,兩次都抽到理科題的概率是多少?若第一次抽到理科題,則第二次抽到理科題的概率是多少?
每個實例有兩個問題組成,后一個問題多一個限制條件,教師引導學生對比兩個實例中前后問題的區(qū)別和聯(lián)系,概括出條件概率的定義。
由于判斷事件的類型對選擇概率公式起著決定性影響,因此在引入定義后讓學生再做一組判斷題練習以鞏固對定義的理解。
【練習】判斷下列是否屬于條件概率
、、在管理系中選1個人排頭舉旗,恰好選中一個的是三年級男生的概率
、、有10把鑰匙,其中只有1把能將門打開,隨機抽出1把試開,若試過的不再用,則第2次能將門打開的概率
、场⒛承〗M12人分得1張球票,依次抽簽,已知前4個人未摸到,則第5個人模到球票的概率
、础膳_車床加工同樣的零件,第一臺的次品率未0.03,第二臺的次品率為0.02,兩臺車床加工的零件放在一起,隨機取出一個零件是發(fā)現(xiàn)是次品,則它是第二臺機床加工的概率是多少?
、、箱子里裝有10件產(chǎn)品,其中只有一件是次品,在9件合格品中,有6件是一等品,3件二等品,現(xiàn)從中任取3件,若取得的都是合格,則僅有1件是一等品的概率
通過以上練習使學生能準確區(qū)分條件概率與一般概率。
數(shù)學說課稿《概率》4
一、教材分析:
1、教材的地位與作用。
本節(jié)內(nèi)容是在學生學習了“事件的可能性的基礎(chǔ)上來學習如何預(yù)測不確定事件(隨機事件)發(fā)生的可能性的大小!庇酶怕暑A(yù)測隨機發(fā)生的可能性大小,在日常生活、自然、科技領(lǐng)域有著廣泛的應(yīng)用,學習本單元知識,無論是今后繼續(xù)深造(高中學習概率的乘法定理)還是參加社會實踐活動都是十分必要的。概率的概念比較抽象,概率的定義學生較難理解。
在教材的處理上,采取小單元教學,本節(jié)課安排讓學生了解求隨機事件概率的兩種方法,目的是讓學生能夠比較系統(tǒng)地理解概率的意義及求概率的方法,為下面學習求比較復雜的情況的概率打下基礎(chǔ)。
2、重點與難點。
重點:對概率意義的理解,通過多次重復實驗,用頻率預(yù)測概率的方法,以及用列舉法求概率的方法。
難點:對概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發(fā)生的總數(shù)及總的結(jié)果數(shù)的分析。
二、目的分析:
知識與技能:掌握用頻率預(yù)測概率和用列舉法求概率方法。
過程與方法:組織學生自主探究,合作交流,引導學生觀察試驗和統(tǒng)計的結(jié)果,進而進行分析、歸納、總結(jié),了解并感受概率的定義的過程,引導學生從數(shù)學的視角觀察客觀世界,用數(shù)學的思維思考客觀世界,以數(shù)學的語言描述客觀世界。
情感態(tài)度價值觀:學生經(jīng)歷觀察、分析、歸納、確認等數(shù)學活動,感受數(shù)學活動充滿了探索性與創(chuàng)造性,感受量變與質(zhì)變的對立統(tǒng)一規(guī)律,同時為概率的.精準、新穎、獨特的思維方法所震撼,激發(fā)學生學習數(shù)學的熱情,增強對數(shù)學價值觀的認識。
三、教法、學法分析:
引導學生自主探究、合作交流、觀察分析、歸納總結(jié),讓學生經(jīng)歷知識(概率定義計算公式)的產(chǎn)生和發(fā)展過程,讓學生在數(shù)學活動中學習數(shù)學、掌握數(shù)學,并能應(yīng)用數(shù)學解決現(xiàn)實生活中的實際問題,教師是學生學習的組織者、合作者和指導者,精心設(shè)計教學情境,有序組織學生活動,讓課堂充滿生機活力,體現(xiàn)“教” 為“學”服務(wù)這一宗旨。
四、教學過程分析:
1、引導學生探究
精心設(shè)計問題一,學生通過對問題一的探究,一方面復習前面學過的“確定事件和不確定事件”的知識,為學好本節(jié)內(nèi)容理清知識障礙,二是讓學生明確為什么要學習概率(如何預(yù)測隨機事件可能性發(fā)生大小)。引導學生對問題二的探究與觀察實驗數(shù)據(jù),使學生了解概率這一重要概念的實際背景,感受并相信隨機事件的發(fā)生中存在著統(tǒng)計規(guī)律性,感受數(shù)學規(guī)律的真實的發(fā)現(xiàn)過程。
2、歸納概括
學生從試驗中得到的統(tǒng)計數(shù)字及概率呈現(xiàn)穩(wěn)定在某一數(shù)值附近這一規(guī)律,讓學生明確概率定義的由來。
引導學生重新對問題一和問題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結(jié)果中所占比例,得到用列舉法求概率的公式,引導學生進行理性思維,邏輯分析,既培養(yǎng)學生的分析問題能力,又讓學生明確用列舉法求概率這一簡便快捷方法的合理性。
P(A)= = = (m
3、舉例應(yīng)用
、乓龑W生對教材書例題、問題一、問題二中問題的進一步分析與探究,讓學生掌握用列舉法求概率的方法。
、埔龑W生對練習中的問題思考與探究,鞏固對概率公式的應(yīng)用及加深對概率意義的理解。
深化發(fā)展
、旁O(shè)置3個小題目,引導學生歸納、分析、總結(jié),加深對知識與方法的理解,并學會靈活運用。
、谱寣W生設(shè)計活動內(nèi)容,對知識進行升華和拓展,引導學生創(chuàng)造性地運用知識思考問題和解決問題,從而培養(yǎng)學生的創(chuàng)新意識和創(chuàng)新能力。
數(shù)學說課稿《概率》5
一、教材分析
1、教材的地位和作用
本節(jié)內(nèi)容是在學生已經(jīng)學習了必然事件、隨機事件、不可能事件等知識的基礎(chǔ)上,從上節(jié)課所講的三種事件出發(fā),以探索隨機事件發(fā)生的可能的大小為目標,并為學生后面學習用列舉法求概率及用頻率估計概率奠定了基礎(chǔ)。
2、教學目標分析
知識與技能:使學生在具體情境中了解概率的意義,能夠運用概率的定義求簡單隨機事件發(fā)生的概率,并闡明理由。
過程與方法:通過實驗、觀察、分析、計算,在活動中培養(yǎng)學生探究問題能力,合作交流意識。并在解決實際問題中提高他們解決問題的能力,發(fā)展學生應(yīng)用知識的意識。
情感態(tài)度與價值觀:引導學生對問題觀察、質(zhì)疑,激發(fā)他們的好奇心和求知欲,使學生在運用數(shù)學知識解決問題的活動中獲得成功的體驗,建立學習的自信心。并且鼓勵學生思維的多樣性,發(fā)展創(chuàng)新意識。
3、重難點分析
教學重點:能夠運用概率的定義求簡單隨機事件發(fā)生的概率,并闡明理由。
教學難點:正確地理解隨機事件發(fā)生的可能性的大小。
二、學法指導及學情分析
本節(jié)課共設(shè)計了6個教學活動,難易程度由淺入深、層層遞進,通過游戲的形式,學生在動手操作、觀察分析、類比歸納中,通過自主探究、合作交流,在教師的啟發(fā)指導下,學生在輕松愉快的環(huán)境中探求新知。充分體現(xiàn)了“數(shù)學教學主要是數(shù)學活動教學”這一思想,體現(xiàn)了師生互動、生生互動的教學理念。
利用多媒體形象生動的特點,增加了課堂的趣味性和直觀性,激發(fā)學生的學習興趣和求知欲望,激活學生思維能力,增大了教學容量,對解決重點、突破難點起到輔助作用。
三、教學過程分析
第一環(huán)節(jié):創(chuàng)設(shè)情景、復習引入
第二環(huán)節(jié):引深拓展,歸納總結(jié)
第三環(huán)節(jié):鞏固知識,實際應(yīng)用
第四環(huán)節(jié):試試伸手,找找不足
第五環(huán)節(jié):交流反思,課時小結(jié)
第六環(huán)節(jié):課后作業(yè),拓展升華
(一)創(chuàng)設(shè)情景、復習引入
判斷下列這些事件是隨機事件、必然事件還是不可能事件?
1、明天會下雨
2、天上掉餡餅
3、買彩票中獎
4、一分鐘等于六十秒
5、老馬失蹄
問題1從分別標有1,2,3,4,5的5根簽中隨機地抽取一根,抽到的號是5。這個事件是隨機事件嗎?抽到5個號碼中任意一個號碼的可能性的`大小一樣嗎?
問題2抽出的可能的結(jié)果一共有多少種?每一種占總數(shù)的幾分之幾?
問題3擲一枚骰子,向上的一面的點數(shù)有多少種可能?它分別是什么?
問題4向上的點數(shù)是1、2、3、4、5、6的可能性的大小相等嗎?它們都是總數(shù)的幾分之幾?
問題5你認為抽到你和抽到別人的可能性一樣嗎?
設(shè)計意圖
通過以抽簽的方式回答問題,讓學生自己的親身體驗,這樣容易激發(fā)起學生學習興趣。這樣安排一方面復習了必然事件、隨機事件和不可能事件的內(nèi)容,而且還加深了對三種事件的理解;另一方面也為過渡到本節(jié)課的教學作了一個很好的鋪墊。
(二)、引申拓展,歸納總結(jié)
概率定義
一般地,對于一個隨機事件A,我們把刻畫其發(fā)生可能性大小的數(shù)值,稱為隨機事件A發(fā)生的概率
表示方法:
事件A的概率表示為P(A)
以上兩個事件有什么共同特點?
提問:
特點1每一次試驗中,可能出現(xiàn)的結(jié)果只有有限個
特點2每一次試驗中,各種結(jié)果出現(xiàn)的可能性相等
1、從標有1,2,3,4,5的五根簽中抽取一根,抽到4的概率是多少?
2、拋一枚硬幣,正面向上的的概率是多少?
一般地,如果在一次試驗中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等。事件A包含其中的m種結(jié)果,那么事件A發(fā)生的概率為P(A)=m/n
請6名同學上臺來參與模擬抽獎游戲,分三次進行
第一次全都沒有獎
第二次有一部分有獎
第三次全都有獎
從此可以看出,不可能事件A的概率為0,即P(A)=0
必然事件A的概率為1,即P(A)=1
隨機事件A的概率0
事件發(fā)生的可能性越大,它的概率越接近1;
事件發(fā)生的可能性越小,它的概率越接近0。
。ㄈ╈柟讨R,實際應(yīng)用
例1擲一個骰子,觀察向上的一面的點數(shù),求下列事件的概率:
(1)點數(shù)為2;
。2)點數(shù)為奇數(shù);
。3)點數(shù)大于2且小于5。
解:擲一個骰子時,向上一面的點數(shù)可能為1,2,3,4,5,6,共6種。這些點數(shù)出現(xiàn)的可能性相等。
(1)P(點數(shù)為2)=1/6
。2)點數(shù)為奇數(shù)有三種可能,即點數(shù)為1,3,5,P(點數(shù)為奇數(shù))=3/6=1/2
。3)點數(shù)大于2且小于5有兩種可能,即點數(shù)為3,4,P(點數(shù)大于2且小于5)=2/6=1/3
例2圖25。1—2是一個轉(zhuǎn)盤,轉(zhuǎn)盤分成7個相同的扇形,顏色分為紅、綠、黃三種顏色。指針的位置固定,轉(zhuǎn)動轉(zhuǎn)盤后任其自由停止,其中的某個扇形會恰好停在指針所指的位置(指針指向兩個扇形的交線時,當作指向右邊的扇形)。求下列事件的概率:
。1)指針指向紅色(2)指針指向紅色或黃色(3)指針不指向紅色。
解:按顏色把7個扇形分別記為:紅1,紅2,紅3,綠1,綠2,黃1,黃2,所以可能結(jié)果的總數(shù)為7。
(1)指針指向紅色(記為事件A)的結(jié)果有3個,即紅1,紅2,紅3,因此P(A)=3/7
。2)指針指向紅色或黃色(記為事件B)的結(jié)果有5個,即紅1,紅2,紅3,黃1,黃2。因此P(B)=5/7
。3)指針不指向紅色(記為事件C)的結(jié)果有4個,即綠1,綠2,黃1,黃2,因此P(C)=4/7
思考:聯(lián)系第一問和第三問,你有什么發(fā)現(xiàn)?
。ㄋ模┰囋嚿焓,找找不足
1、一共52張不同的紙牌(已去除大小王),隨機抽出一張是A牌的概率;
2、在1~10之間有五個偶數(shù)2、4、6、8、10,將這5個偶數(shù)寫在紙片上,抽取一張是奇數(shù)的概率;
3、在1~10之間3的倍數(shù)有3,6,9,隨機抽出一個數(shù)是3的倍數(shù)的概率;
4、一個袋子中裝有15個球,其中有10個紅球,則摸出一個球不是紅球的概率。
設(shè)計意圖
鞏固學生對概率定義的理解和認識及對概率的計算公式的簡單運用技能。以達到及時學習、及時應(yīng)用,讓學生從中找一成功的感覺,從而提高學生對學習數(shù)學的興趣。
(五)交流反思,課時小結(jié)
如果在一次實驗中,有n種可能的結(jié)果,并且他們發(fā)生的可能性都相等,事件A包含其中的m種結(jié)果,那么事件A發(fā)生的概率P(A)=m/n。
0≤m≤n,有0≤m/n≤1
因此0≤P(A)≤1
P(必然事件)=1P(不可能事件)=0
(六)課后作業(yè),拓展升華
數(shù)學說課稿《概率》6
各位老師:
大家好!我叫***,來自**。我說課的題目是《概率的基本性質(zhì)》,內(nèi)容選自于高中教材新課程人教A版必修3第三章第一節(jié),課時安排為三個課時,本節(jié)課內(nèi)容為第三課時。下面我將從教材分析、教學目標分析、教法分析、教學過程分析四大方面來闡述我對這節(jié)課的分析和設(shè)計:
一、教材分析
1、教材所處的地位和作用
本節(jié)課主要包含了兩部分內(nèi)容:一是事件的關(guān)系與運算,二是概率的基本性質(zhì),多以基本概念和性質(zhì)為主。它是本冊第二章統(tǒng)計的延伸,又是后面"古典概型"及"幾何概型"的基礎(chǔ)。在整個教學中起到承上啟下的作用。同時也是新課改以來考查的熱點之一。
2、教學的重點和難點
重點:概率的加法公式及其應(yīng)用;事件的關(guān)系與運算。
難點:互斥事件與對立事件的區(qū)別與聯(lián)系
二、教學目標分析
1.知識與技能目標
⑴了解隨機事件間的基本關(guān)系與運算;
⑵掌握概率的幾個基本性質(zhì),并會用其解決簡單的概率問題。
2、過程與方法:
、磐ㄟ^觀察、類比、歸納培養(yǎng)學生運用數(shù)學知識的綜合能力;
、仆ㄟ^學生自主探究,合作探究培養(yǎng)學生的動手探索的能力。
3、情感態(tài)度與價值觀:
通過數(shù)學活動,了解教學與實際生活的密切聯(lián)系,感受數(shù)學知識應(yīng)用于現(xiàn)實世界的具體情境,從而激發(fā)學習數(shù)學的情趣。
三、教法分析
采用實驗觀察、質(zhì)疑啟發(fā)、類比聯(lián)想、探究歸納的教學方法。
四、教學過程分析
1、創(chuàng)設(shè)情境,引入新課
在擲骰子的試驗中,我們可以定義許多事件,如:
c1=﹛出現(xiàn)的點數(shù)=1﹜,c2=﹛出現(xiàn)的點數(shù)=2﹜
c3=﹛出現(xiàn)的點數(shù)=3﹜,c4=﹛出現(xiàn)的點數(shù)=4﹜
c5=﹛出現(xiàn)的點數(shù)=5﹜,c6=﹛出現(xiàn)的點數(shù)=6﹜
D1=﹛出現(xiàn)的點數(shù)不大于1﹜D2=﹛出現(xiàn)的點數(shù)大于3﹜
D3=﹛出現(xiàn)的點數(shù)小于5﹜,E=﹛出現(xiàn)的點數(shù)小于7﹜
f=﹛出現(xiàn)的點數(shù)大于6﹜,G=﹛出現(xiàn)的點數(shù)為偶數(shù)﹜
H=﹛出現(xiàn)的點數(shù)為奇數(shù)﹜
、乓砸肜械氖录㧟1和事件H,事件c1和事件D1為例講授事件之的包含關(guān)系和相等關(guān)系。
⑵從以上兩個關(guān)系學生不難發(fā)現(xiàn)事件間的關(guān)系與集合間的關(guān)系相類似。進而引導學生思考,是否可以把事件和集合對應(yīng)起來。
「設(shè)計意圖」引出我們接下來要學習的主要內(nèi)容:事件之間的關(guān)系與運算
2、探究新知
、迨录年P(guān)系與運算
、沤(jīng)過上面的思考,我們得出:
試驗的.可能結(jié)果的全體←→全集
↓↓
每一個事件←→子集
這樣我們就把事件和集合對應(yīng)起來了,用已有的集合間關(guān)系來分析事件間的關(guān)系。
集合的并→兩事件的并事件(和事件)
集合的交→兩事件的交事件(積事件)
在此過程中要注意幫助學生區(qū)分集合關(guān)系與事件關(guān)系之間的不同。
(例如:兩集合A∪B,表示此集合中的任意元素或者屬于集合A或者屬于集合B;而兩事件A和B的并事件A∪B發(fā)生,表示或者事件A發(fā)生,或者事件B發(fā)生。)
「設(shè)計意圖」為更好地理解互斥事件和對立事件打下基礎(chǔ),
⑵思考:①若只擲一次骰子,則事件c1和事件c2有可能同時發(fā)生么?
、谠跀S骰子實驗中事件G和事件H是否一定有一個會發(fā)生?
「設(shè)計意圖」這兩道思考題都很容易得到答案,主要目的是為引出接下來將要學習的互斥事件和對立事件,讓學生從實際案例中體驗它們各自的特征以及它們之間的區(qū)別與聯(lián)系。
⑶總結(jié)出互斥事件和對立事件的概念,并通過多媒體的圖形演示使學生們能更好地理解它們的特征以及它們之間的區(qū)別與聯(lián)系。
、染毩暎和ㄟ^多媒體顯示兩道練習,目的是讓學生們能夠及時鞏固對互斥事件和對立事件的學習,加深理解。
、娓怕实幕拘再|(zhì):
、呕仡櫍侯l率=頻數(shù)/試驗的次數(shù)
我們知道當試驗次數(shù)足夠大時,用頻率來估計概率,由于頻率在0~1之間,所以,可以得到概率的基本性質(zhì)、
。ㄍㄟ^對頻率的理解并結(jié)合前面投硬幣的實驗來總結(jié)出概率的基本性質(zhì),師生共同交流得出結(jié)果)
3、典型例題探究
例1一個射手進行一次射擊,試判斷下列事件哪些是互斥事件?哪些是對立事件?
事件A:命中環(huán)數(shù)大于7環(huán);事件B:命中環(huán)數(shù)為10環(huán);
事件c:命中環(huán)數(shù)小于6環(huán);事件D:命中環(huán)數(shù)為6、7、8、9、10環(huán)、
分析:要判斷所給事件是對立還是互斥,首先將兩個概念的聯(lián)系與區(qū)別弄清楚
例2如果從不包括大小王的52張撲克牌中隨機抽取一張,那么取到紅心(事件A)的概率是1/4,取到方塊(事件B)的概率是1/4,問:
。1)取到紅色牌(事件c)的概率是多少?
。2)取到黑色牌(事件D)的概率是多少?
分析:事件c是事件A與事件B的并,且A與B互斥,因此可用互斥事件的概率和公式求解;事件c與事件D是對立事件,因此P(D)=1—P(c).
「設(shè)計意圖」通過這兩道例題,進一步鞏固學生對本節(jié)課知識的掌握,并將所學知識應(yīng)用到實際解決問題中去。
4、課堂小結(jié)
、爬斫馐录年P(guān)系和運算
、普莆崭怕实幕拘再|(zhì)
「設(shè)計意圖」小結(jié)是引導學生對問題進行回味與深化,使知識成為系統(tǒng)。讓學生嘗試小結(jié),提高學生的總結(jié)能力和語言表達能力。教師補充幫助學生全面地理解,掌握新知識。
5、布置作業(yè)
習題3、1A1、3、4
「設(shè)計意圖」課后作業(yè)的布置是為了檢驗學生對本節(jié)課內(nèi)容的理解和運用程度,并促使學生進一步鞏固和掌握所學內(nèi)容。
五、板書設(shè)計
概率的基本性質(zhì)
一、事件間的關(guān)系和運算
二、概率的基本性質(zhì)
三、例1的板書區(qū)
例2的板書區(qū)
四、規(guī)律性質(zhì)總結(jié)
【數(shù)學說課稿《概率》】相關(guān)文章:
人教版高中數(shù)學必修3說課稿:概率的意義(通用10篇)12-15
概率初步《概率》教學反思范文05-16
數(shù)學教案-等可能性事件的概率08-17
數(shù)學教案用列舉法求概率02-08
高中數(shù)學中概率問題的探究與分析08-20
概率教學反思08-24
新課標下高中文科數(shù)學概率與統(tǒng)計的教學思考08-20
概率與頻率的教學設(shè)計08-16