二元一次方程與一次函數(shù)教案(通用7篇)
作為一位優(yōu)秀的人民教師,常常需要準備教案,教案是教學活動的依據(jù),有著重要的地位。我們應該怎么寫教案呢?以下是小編為大家收集的二元一次方程與一次函數(shù)教案,希望能夠幫助到大家。
二元一次方程與一次函數(shù)教案 1
學習目標:
1. 使學生初步理解二元一次方程與一次函數(shù)的關系
2. 能根據(jù)一次函數(shù)的圖像求二元一次方程組的近似值
3. 能解二元一次方程組的方法求兩條直線的交點坐標
學習重點:
1. 用作圖像法求二元一次方程組的近似值
2. 用解二元一次方程組的方法求兩條直線的交點坐標
學習難點:
1. 做圖像時要標準、精確,近似值才接近
2. 解二元一次方程組時計算準確,方法適宜
學習方法:
先自學課本,用心思考自主學習部分,努力獨立完成,再與其他同學討論未明白的內容。課上展示,針對自己不明白問題多聽多問。
自主學習部分:
問題1.(1)方程x+y=5的解有多少組?寫出其中的幾組解。
(2)在直角坐標系中分別描出以上這些解為坐標的點,它們在一次函數(shù)y=5-x的圖像上嗎?
。3)在一次函數(shù)y=5-x的圖像上任取一點,它們的坐標適合方程x+y=5嗎?
。4)以方程x+y=5的解為坐標的所有點組成的.圖像與一次函數(shù)y=5-x的圖像相同嗎?
。5)由以上的探究過程,你發(fā)現(xiàn)了什么?
問題2.(1)在同一個直角坐標系內分別作出一次函數(shù)y=5-x和y=2x-1的圖像,這兩個圖像有交點嗎?如果有,寫出交點坐標?
。2)一次函數(shù)y=5-x和y=2x-1的交點坐標與方程 組 的解有什么關系?你能說明理由嗎?
(3)由以上探究過程,我們發(fā)現(xiàn)解二元一次方程組的方法除了加減消元法和代入消元法,還可以用 法解方程組;我們還發(fā)現(xiàn)可以利用解二元一次方程組的方法求兩條直線交點的坐標。
合作探究:
(1) 用做圖像的方法解方程組
(2)用解方程的方法求直線y=4-2x與直線y=2x-12交點
二元一次方程與一次函數(shù)教案 2
一、教材分析
1、教材的地位和作用
函數(shù)、方程和不等式都是人們刻畫現(xiàn)實世界的重要數(shù)學模型。用函數(shù)的觀點看方程(組)與不等式,使學生不僅能加深對方程(組)、不等式的理解,提高認識問題的水平,而且能從函數(shù)的角度將三者統(tǒng)一起來,感受數(shù)學的統(tǒng)一美。本節(jié)課是學生學習完一次函數(shù)、一元一次方程及一元一次不等式的聯(lián)系后對一次函數(shù)和二元一次方程(組)關系的探究,學生在探索過程中體驗數(shù)形結合的思想方法和數(shù)學模型的應用價值,這對今后的學習有著十分重要的意義。
2、教學重難點
重點:一次函數(shù)與二元一次方程(組)關系的探索。
難點:綜合運用方程(組)、不等式和函數(shù)的知識解決實際問題。
3、教學目標
知識技能:理解一次函數(shù)與二元一次方程(組)的關系,會用圖象法解二元一次方程組。
數(shù)學思考:經(jīng)歷一次函數(shù)與二元一次方程(組)關系的探索及相關實際問題的解決過程,學會用函數(shù)的觀點去認識問題。
解決問題:能綜合應用一次函數(shù)、一元一次方程、一元一次不等式、二元一次方程(組)解決相關實際問題。
情感態(tài)度:在探究活動中培養(yǎng)學生嚴謹?shù)目茖W態(tài)度和勇于探索的科學精神,在師生、生生的交流活動中,學會與人合作,學會傾聽、欣賞和感悟,體驗數(shù)學的價值,建立自信心。
二、教法說明
對于認知主體——學生來說,他們已經(jīng)具備了初步探究問題的能力,但是對知識的主動遷移能力較弱,為使學生更好地構建新的認知結構,促進學生的發(fā)展,我將在教學中采用探究式教學法。以學生為中心,使其在“生動活潑、民主開放、主動探索”的氛圍中愉快地學習。
三、教學過程
(一)感知身邊數(shù)學
多媒體播放一段發(fā)生在電信公司里的情景:一顧客準備辦理上網(wǎng)業(yè)務,發(fā)現(xiàn)有兩種收費方式:方式A以每分鐘0.1元的價格按上網(wǎng)時間計費;方式B除收月基費20元外再以每分鐘0.05元的價格按上網(wǎng)時間計費。顧客說他每月上網(wǎng)的費用按這兩種收費方式計算都是一樣多。求這位顧客打算每月上網(wǎng)多長時間?多少費用?
學生已經(jīng)學習過列方程(組)解應用題,因此可能列出一元一次方程 或二元一次方程組,用方程模型解決問題。結合前面對一次函數(shù)與一元一次方程、一元一次不等式之間關系的探究,我自然地提出問題:“一次函數(shù)與二元一次方程組之間是否也有聯(lián)系呢?”,從而揭示課題。
[設計意圖]建構主義認為,在實際情境中學習可以激發(fā)學生的學習興趣。因此,用“上網(wǎng)收費”這一生活實際創(chuàng)設情境,并用問題啟發(fā)學生去思、鼓勵學生去探、激勵學生去說,努力給學生造成“心求通而未能得,口欲言而不能說”的情勢,從而喚起學生強烈的求知欲,使他們以躍躍欲試的姿態(tài)投入到探索活動中來。
。ǘ┫硎芴骄繕啡
1、探究一次函數(shù)與二元一次方程的關系
填空:二元一次方程 可以轉化為 ________。
思考:
(1)直線 上任意一點 一定是方程 的解嗎?
。2)是否任意的二元一次方程都可以轉化為這種一次函數(shù)的形式?
(3)是否直線上任意一點的坐標都是它所對應的二元一次方程的解?
[設計意圖]用一連串的問題引導學生發(fā)現(xiàn)一次函數(shù)與二元一次方程在數(shù)與形兩個方面的關系,為探索二元一次方程組的解與直線交點坐標的'關系作好鋪墊。
2、探究一次函數(shù)與二元一次方程組的關系
(1)在同一坐標系中畫出一次函數(shù) 和 的圖象,觀察兩直線的交點坐標是否是方程組 的解?并探索:是否任意兩個一次函數(shù)的交點坐標都是它們所對應的二元一次方程組的解?
此時教師留給學生充分探索交流的時間與空間,對學生可能出現(xiàn)的疑問給予幫助,師生共同歸納出:從“形”的角度看,解方程組相當于確定兩條直線交點的坐標。
(2)當自變量 取何值時,函數(shù) 與 的值相等?這個函數(shù)值是什么?這一問題與解方程組 是同一問題嗎?
進一步歸納出:從“數(shù)”的角度看,解方程組相當于考慮自變量為何值時兩個函數(shù)的值相等,以及這個函數(shù)值是何值。
[設計意圖] 學生經(jīng)過自主探索、合作交流,從數(shù)和形兩個角度認識一次函數(shù)與二元一次方程組的關系,真正掌握本節(jié)課的重點知識,從而在頭腦中再現(xiàn)知識的形成過程,避免單純地記憶,使學習過程成為一種再創(chuàng)造的過程。此時教師及時對學生進行鼓勵,充分肯定學生的探究成果,關注學生的情感體驗。
。ㄈ┏俗腔劭燔
例題:我市一家電信公司給顧客提供兩種上網(wǎng)收費方式:方式A以每分0.1元的價格按上網(wǎng)時間計費;方式B除收月基費20元外再以每分0 .05元的價格按上網(wǎng)時間計費。如何選擇收費方式能使上網(wǎng)者更合算?
解法1:設上網(wǎng)時間為 分,若按方式A則收 元;若按方式B則收 元。然后在同一坐標系中分別畫出這兩個函數(shù)的圖象,計算出交點坐標 ,結合圖象,利用直線上點位置的高低直觀地比較函數(shù)值的大小,得到當一個月內上網(wǎng)時間少于400分時,選擇方式A省錢;當上網(wǎng)時間等于400分時,選擇方式A、B沒有區(qū)別;當上網(wǎng)時間多于400分時,選擇方式B省錢。
解法2:設上網(wǎng)時間為 分,方式B與方式A兩種計費的差額為 元,得到一次函數(shù): ,即 ,然后畫出函數(shù)的圖象,計算出直線與 軸的交點坐標,類似地用點位置的高低直觀地找到答案。
注意:所畫的函數(shù)圖象都是射線。
[設計意圖]為培養(yǎng)學生的發(fā)散思維和規(guī)范解題的習慣,引導學生將上網(wǎng)問題延伸為例題,并用問題:“你家選擇的上網(wǎng)收費方式好嗎?”再次激起學生強烈的求知欲望和主人翁的學習姿態(tài)。通過此問題的探究,使學生有效地理解本節(jié)課的難點,體會數(shù)形結合這一思想方法的應用。
。ㄋ模w驗成功喜悅
1、搶答題
。1)、以方程 的解為坐標的所有點都在一次函數(shù) _____的圖象上。
。2)、方程組 的解是________,由此可知,一次函數(shù) 與 的圖象必有一個交點,且交點坐標是________。
2、旅游問題
古城荊州歷史悠久,文化燦爛。今年,大型歷史劇《萬歷首輔張居正》在荊州封鏡后,來荊州的游客更是絡繹不絕。據(jù)悉,張居正紀念館門票標價20元/張,近期正在進行優(yōu)惠活動,購買時有兩種方式:方式A是團隊中每位游客按8折購買;方式B是團隊中除5張按標價購買外,其余按7折購買。如果你是團隊的負責人,你會如何選擇購買方式使整個團隊更合算?
[設計意圖]抓住學生對競爭充滿興趣的心理特征,用搶答題使學生的眼、耳、腦、口得到充分的調動,并在搶答中品味成功的快樂,提高思維的速度。在學生感興趣的旅游問題中,進一步培養(yǎng)學生應用數(shù)學的意識,更好地促進學生對本節(jié)課難點的理解和應用,幫助學生不斷完善新的認知結構。
。ㄎ澹┓窒砟阄沂斋@
在課堂臨近尾聲時,向學生提出:通過今天的學習,你有什么收獲?你印象最深的是什么?
[設計意圖]培養(yǎng)學生歸納和語言表達能力,鼓勵學生從數(shù)學知識、數(shù)學方法和數(shù)學情感等方面進行自我評價。
二元一次方程與一次函數(shù)教案 3
一、教材分析
。ㄒ唬┙滩牡牡匚缓妥饔
函數(shù)、方程和不等式都是人們刻畫現(xiàn)實世界的重要數(shù)學模型。用函數(shù)的觀點看方程(組)與不等式,學生不僅能加深對方程(組)、不等式的理解,提高認識問題的水平,而且能從函數(shù)的角度將三者統(tǒng)一起來,感受數(shù)學的統(tǒng)一美,學生在探索過程中體驗到的數(shù)形結合以及數(shù)學建模思想,既是對前面所學知識的升華,同時也對今后學習高中的解析幾何有著十分重要的意義。
(二)教學目標
新一輪的課程改革,旨在促進學生全面、持續(xù)、和諧的發(fā)展,我認為本節(jié)課的教學應達到以下目標:知識技能方面:理解一次函數(shù)與二元一次方程組的關系,會用圖象法解二元一次方程組;
數(shù)學思考方面:經(jīng)歷一次函數(shù)與二元一次方程(組)關系的探索及相關實際問題的解決過程,學會用函數(shù)的觀點去思考問題;
解決問題方面:能綜合應用一次函數(shù)、一元一次方程、一元一次不等式、二元一次方程(組)解決相關實際問題;
情感態(tài)度方面:在探究活動中培養(yǎng)學生嚴謹?shù)目茖W態(tài)度和勇于探索的科學精神,在師生、生生的交流活動中,學會與人合作,學會傾聽、欣賞和感悟,體驗數(shù)學的價值,建立自信。
。ㄈ┙虒W重、難點
從以上目標可以看出,學生既要通過對一次函數(shù)與二元一次方程(組)關系的探究,習得知識、培養(yǎng)能力,又要用此關系解決相關實際問題,因此,本節(jié)課的教學重點應是一次函數(shù)與二元一次方程(組)關系的探索。考慮到八年級學生的數(shù)學應用意識不強,本節(jié)課的難點應是綜合運用方程(組)、不等式和函數(shù)的知識解決相關實際問題。而關鍵則是通過問題情境的設計,激發(fā)學生的求知欲,引導學生探索、交流,引導學生發(fā)現(xiàn)、分析、解決問題。
二、教法分析
《數(shù)學課程標準》明確指出“數(shù)學教學是數(shù)學活動的教學”,“學生是數(shù)學學習的主人”。教師的職責在于向學生提供從事數(shù)學活動的機會,在活動中激發(fā)學生的學習潛能,引導學生自由探索、合作交流與實踐創(chuàng)新。對于認知主體來說,八年級學生樂于探索,富于幻想,但他們的數(shù)學推理能力以及對知識的主動遷移能力較弱,為幫助學生更好地構建新的認知結構,促進學生的主動發(fā)展,本節(jié)課我采用情境—探究式教學法,以“情境――問題――探究――交流――應用――反思――提高” 的模式展開,以學生為中心,使其在“生動活潑、民主開放、主動探索”的氛圍中愉快學習。
三、過程分析
本著重實際、重探究、重過程、重交流的教學宗旨,我將本節(jié)課的教學設計成以下六個環(huán)節(jié):情景導入——探究合作——解決問題——鞏固提高——歸納小結——布置作業(yè)。
這節(jié)課,我首先用貼近學生實際、學生感興趣的問題——上網(wǎng)交費問題引導學生進入本節(jié)課的學習,充分調動學生的積極性。課件展示學生回答的用列方程組解答的過程,并提出問題:“同學們在解這個二元一次方程組時,基本上都是用的代入法或加減法,那么解二元一次方程組還有其它的方法嗎?”學生討論后可能會感到束手無策,感到原有的知識不夠用了。一石激起千層浪,問題提出來后,如何解決呢?此時,作為教師,應把握好組織者、引導者和合作者的身份,不要急于發(fā)表自己的意見,而應啟發(fā)學生去思、鼓勵學生去探、激勵學生去說,努力給學生造成“心求通而未能得,口欲言而不能說”的態(tài)勢,從而喚起學生強烈的學習熱情,使他們主動積極地投入到探索活動中來。另外,此問題的設置也為后面例題的講解作好鋪墊,有利于教學難點的突破。
為使學生更好地掌握本節(jié)課的重點知識,我遵循從特殊到一般,再從一般到特殊的認知規(guī)律,設計了以下問題“你們能否將方程
轉化為一次函數(shù)的形式呢?”“如果能,你們能在平面直角坐標系中能畫出它的圖象嗎?”在學生將方程轉化為一次函數(shù)的形式并畫出圖象后,我引導學生觀察直線上的幾個點,發(fā)現(xiàn)它們的坐標都是方程
的解,緊接著問“直線上任意一點的坐標一定是方程的解嗎?”“是否任意的二元一次方程都可以轉化為一次函數(shù)的形式呢?”“是否所有直線上任意一點的坐標都是它所對應的二元一次方程的解呢?”學生先獨立思考,然后小組討論,不難發(fā)現(xiàn):每個二元一次方程都對應一個一次函數(shù),于是也就對應一條直線。一連串的問題由淺入深,環(huán)環(huán)相扣,引導學生發(fā)現(xiàn)一次函數(shù)與二元一次方程在數(shù)與形兩個方面的關系,為探索二元一次方程組的解與直線交點坐標的關系作好鋪墊。
緊接著問學生:“你能用剛才的方法研究另一個方程2x—y=1嗎?”學生在同一坐標系中畫出一次函數(shù)y=2x—1的圖象后,發(fā)現(xiàn)兩條直線有一個交點,我又問“這個交點坐標與這兩條直線所對應的方程的解有什么關系?與這兩個方程組成的方程組的解又有什么關系?”此時,學生慢慢體會到:既然每個二元一次方程都對應一條直線,二元一次方程的每一個解又對應直線上的每一個點,那么兩個二元一次方程的公共解就對應著兩條直線的公共點,也就是說,二元一次方程組的解不就是對應著兩條直線的交點嗎?這個時期,教師應留給學生充分探索交流的時間與空間,對學生可能出現(xiàn)的疑問給予及時幫助,師生共同歸納出:用畫圖象的方法可以解二元一次方程組,從而解決了本節(jié)課開頭所提出的問題。然后共同歸納:從“形”的角度看,解方程組相當于確定兩條直線交點的坐標。這告訴我們,既可用畫圖象的方法可以解二元一次方程組,也可用解方程組的方法求兩條直線交點的坐標。利用剛才已有的探究經(jīng)驗,學生很容易想到此問題的'探究還可以從數(shù)的角度看,進一步歸納出:從“數(shù)”的角度看,解方程組相當于考慮自變量為何值時兩個函數(shù)的值相等,這個函數(shù)值是何值。
這樣,學生經(jīng)過自主探索、合作交流,從數(shù)和形兩個角度認識了一次函數(shù)與二元一次方程組的關系,真正掌握本節(jié)課的重點知識,并使學習過程成為一種再創(chuàng)造的過程。學生從一個個小問題的回答,到最后的歸納,充分享受學習、探究帶來的快樂,此時教師應充分肯定學生的探究成果,及時對學生進行鼓勵,關注學生的情感體驗。
為滿足學生學以致用、爭強好勝的心理需求,我特意設計了兩個搶答題,既加強了對所學知識的消化理解,又調動了學生的積極性,更讓他們在搶答中品味到了成功的快樂。趁著學生高漲的情緒,我迅速引入開頭部分意猶未盡的上網(wǎng)收費問題,加以變式,再次激起學生強烈的求知欲望和主人翁的學習姿態(tài)。經(jīng)過一番探索,學生可能想到:要選擇合理的收費方式就需要對它們所收費用的大小進行比較,因此一定會有學生用過去的知識——方程或不等式解決問題,對于這部分學生的想法要給予充分的肯定表揚,然后繼續(xù)提問“你能用今天所學的圖象法來解決這個問題嗎?”引導學生建立函數(shù)模型進行探索。
學生在同一坐標系中分別畫出兩個一次函數(shù)的圖象后,我引導學生觀察圖象的特征,學生討論后發(fā)現(xiàn)當0 ≤ x < 400時,紅色點在藍色點的上方;當x=400時,紅色點與藍色點重合;當x>400時,紅色點在藍色點的下方,這樣利用直線上點位置的高低直觀地比較函數(shù)值的大小,從而找到答案。為避免圖象法作圖誤差造成的不足,可引導學生通過代數(shù)計算求出交點坐標。為培養(yǎng)學生一題多解的能力,我啟發(fā)學生用作差法,類似地用點位置的高低直觀地找到y(tǒng)>0,y=0 及y<0 時所對應的x的范圍,進而得到答案。通過對實際問題的探究,學生可以發(fā)現(xiàn)圖象法的直觀性,體會數(shù)形結合這一思想方法的應用,并學會用函數(shù)的觀點,動態(tài)地分析不等式和方程(組)。
為了鞏固學生的學習成果,我把剛剛結束不久的鐵山礦冶文化旅游節(jié)帶進課堂,讓學生欣賞一組美麗的黃石礦冶文化景點圖片,在學生體驗家鄉(xiāng)美好的輕松愉快氛圍中,我再一次出示了一個與之有關的旅游購票問題,并鼓勵學生用不同的方法進行解答,進一步培養(yǎng)學生應用數(shù)學的意識,從而更好地促進學生對本節(jié)課難點的理解和應用,幫助學生不斷完善新的認知結構。
在課堂臨近尾聲時,引導學生對本節(jié)課所學進行小結,鼓勵學生從數(shù)學知識、數(shù)學方法和數(shù)學情感等方面進行自我評價。嘗試開放式課堂教學,以真正體現(xiàn)學生的主體地位,使課堂活動民主化,多樣化。
本節(jié)課的作業(yè)由必做題和選做題組成,體現(xiàn)分層教學,讓不同的學生在數(shù)學上得到不同的發(fā)展。
四、設計說明
這節(jié)課,我始終貫穿以學生為主體的原則,突出數(shù)形結合的思想,體現(xiàn)數(shù)學建模的價值,滲透應用數(shù)學的意識,關注學生個性的發(fā)展,讓每一個學生在課堂上都有所感悟,都有著各自的數(shù)學體驗,不同的學生在數(shù)學的各個不同方面上都得到不同的發(fā)展。
二元一次方程與一次函數(shù)教案 4
教學目標
1.知識與能力目標
。1)二元一次方程和一次函數(shù)的關系。
。2)二元一次方程組的圖象解法。
。3)通過學生的思考和操作,力圖提示出方程與圖象之間的關系,引入二元一次方程組的圖象解法。同時培養(yǎng)學生初步的數(shù)形結合的意識和能力。
2.情感態(tài)度價值觀目標
通過學生的自主探索,提示出方程和圖象之間的對應關系,加強新舊知識的聯(lián)系,培養(yǎng)學生的創(chuàng)新意識,激發(fā)了學生學習數(shù)學的興趣,使學生體驗數(shù)學活動充滿探索與創(chuàng)造。
教材分析
前面已經(jīng)分別學習了一次函數(shù)和二元一次方程組,這節(jié)課研究二元一次方程組(數(shù))和一次函數(shù)(形)的關系,是這兩章知識的綜合運用。強化了部分與整體的內在聯(lián)系,知識與知識的內在聯(lián)系,并為今后解析幾何的學習奠定基礎。
教學重點
1、二元一次方程和一次函數(shù)的關系。
2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解。
教學難點
方程和函數(shù)之間的對應關系即數(shù)形結合的意識和能力。
教學方法
學生操作——————自主探索的方法
學生通過自己操作和思考,結合新舊知識的.聯(lián)系,自主探索出方程與圖象之間的對應關系,以引入二元一次方程組的圖象解法,同時也建立了“數(shù)”————二元一次方程組和“形”————函數(shù)的圖象(直線)之間的對應關系,培養(yǎng)了學生數(shù)形結合的意識和能力。
教學過程
一. 故事引入
迪卡兒的故事——————蜘蛛給予的啟示
十七世紀法國數(shù)學家迪卡兒有一次生病臥床,他看見屋頂上的一只蜘蛛順著絲左右爬行。迪卡兒看到蜘蛛的“表演”猛的機靈一動。他想,可以把蜘蛛看成一個點,它可以上、下、左、右運動,能不能把蜘蛛的位置用一組數(shù)確定下來呢?
在蜘蛛爬行的啟示下,迪卡兒創(chuàng)建了直角坐標系,在坐標系下幾何圖形(形)和方程(數(shù))建立聯(lián)系。迪卡兒坐標系起到了橋梁和紐帶的作用。從而我們可以把圖形化成方程來研究,也可以用圖象來研究方程。
這節(jié)課我們就來研究二元一次方程(數(shù))與一次函數(shù)(形)的關系。
二. 嘗試探疑
1、Y=x+1
你們把我叫一次函數(shù),我也是二元一次方程。∵@是怎么回事,你知道嗎?
學生先是疑惑:方程就是方程,函數(shù)就是函數(shù),它們能有什么聯(lián)系呢?然后通過思考、交流,最后恍然大悟。初步感受一次函數(shù)與二元一次方程的內在聯(lián)系。
2、函數(shù)y=x+1上的任意一點的坐標是否滿足方程x—y=—1?
以方程x—y=—1的解為坐標的點在不在函數(shù)y=x+1 的圖象上?方程x—y=—1與函數(shù)y=x+1有何關系?
學生會迫不及待地拿起筆來計算。從函數(shù)y=x+1圖象上找?guī)讉點看它們的坐標是否滿足方程x—y=—1。結果都滿足。然后學生就會自主和同伴交流,問一問同伴函數(shù)y=x+1圖象上的點滿足不滿足方程x—y=—1。結果也都滿足。這樣他們就會搭成共識:函數(shù)y=x+1上的任意一點的坐標都滿足方程 x—y=—1。
然后學生會用同樣的方法得出另一個結論:以方程x—y=—1的解為坐標的點一定在函數(shù)y=x+1的圖象上。然后開始思索函數(shù)y=x+1和方程x—y=—1到底有何關系呢?通過交流自動得出結論:以方程x—y=—1的解為坐標的點組成的圖象與一次函數(shù)y=x+1的圖象相同。
3。在同一坐標系下,化出y=x+1與y=4x—2的圖象,他們的交點坐標是什么?
方程組y=x+1的解是什么?二者有何關系?
y=4x—2
學生根據(jù)畫圖象的方法畫出兩函數(shù)圖象,畫出交點坐標。用消元法解出方程組的解。學生會大吃一驚:兩者出奇地相近或者干脆就相同。這是怎么回事呢?然后開始探究二者關系。通過交流、討論得出結論:函數(shù)y=x+1和y=4x—2的交點坐標就是由兩個函數(shù)表達式組成的方程組
y=x+1 的解。
Y=4x—2
教師作最后總結:因為函數(shù)和方程有以上關系,所以我們就可以用圖象法解決方程問題,也可以用方程的方法解決圖象問題。
三. 方程與函數(shù)關系的應用
解方程組 x—2y=—2
2x—y=2
學生會很快的用消元法解出來。
老師發(fā)問:誰還有其他的方法?如果有,鼓勵學生大膽提出。并給予口頭表揚。如果沒有人用其他的方法,老師提出問題:你能不能用圖象的方法求方程組的解呢?這時,學生就會去探索新的思路、方法。
一回憶方程與函數(shù)的關系,有了!方程組的解不就是兩個方程變形得到的兩個函數(shù)圖象的交點坐標嗎?學生就會迅速動筆用這種方法把方程解出來。作完之后,互相交流。學生總結一下做題步驟:
1、把兩個方程都化成函數(shù)表達式的形式。
2、畫出兩個函數(shù)的圖象。
3、畫出交點坐標,交點坐標即為方程組的解。
問題又出來了,有的同學的解是 x=2 有的同學的解是 x=2.1 y=2.1
y=1.9 有的同學的解是……雖然都和消元法得到的結果相近,但各不相同。
老師提問:你能說一下用圖象法解方程組的不足嗎?
學生爭先恐后的回答:用這種方法求的解是近似值。不準確。學生提出疑問:既然不準確,那學習它有什么用呢?用消元法就足夠了!
教師解釋一下:在現(xiàn)實生活和生產(chǎn)中,我們會遇到特別復雜的方程,用消元法解不太容易,我們就可以用電腦繪制成函數(shù)圖象,很容易找出交點坐標。教師可以用Z+Z智能教育平臺演示一下。
[點評]用作圖象的方法解方程組,這體現(xiàn)了兩個知識點的內在聯(lián)系。學數(shù)學知識,探索知識點之間的聯(lián)系,可起到化新為舊的作用,達到事半功倍的效果。逐步讓學生學會這種學習新知識的技巧。
四. 引申
方程組 x+y=2
x+y=5 解的情況如何?你能從函數(shù)的角度解釋一下嗎?
學生用消元法開始解方程組,結果無解,怎么回事呢?學生會嘗試運用方程組的圖象解法。畫出兩個函數(shù)圖象。答案有了!圖象是平行的,沒有交點。所以方程組無解了。哇!太神奇了!方程的問題可以用圖象的方法解決了。
[點評]因為有了上面的用作圖象法解方程組,在這里,學生就會自覺地從函數(shù)的角度探究方程的問題,初步具有了數(shù)形結合的意識和能力。
五. 課后小結
本節(jié)課我們通過操作和思考,揭示了二元一次方程和函數(shù)圖象之間的對應關系,從而引入二元一次方程組的圖象解法,同時也建立了“數(shù)”————二元一次方程與“形”——————函數(shù)圖象之間的對應關系,培養(yǎng)了學生初步的數(shù)形結合的意識和能力。
六. 作業(yè)
1、用作圖象法解方程組2x+y=4
2x—3y=12
2、如圖,直線L、L相交于點 A,試求出A點坐標。
二元一次方程與一次函數(shù)教案 5
教學目標:
1. 理解二元一次方程的概念,掌握其一般形式。
2. 掌握二元一次方程組的解法,特別是代入法和消元法。
3. 理解二元一次方程與一次函數(shù)之間的關系,能夠將二元一次方程轉化為一次函數(shù)圖像進行求解。
4. 培養(yǎng)學生的抽象思維能力和邏輯推理能力,以及運用數(shù)學知識解決實際問題的能力。
教學重點:
二元一次方程組的解法。
二元一次方程與一次函數(shù)的關系。
教學難點:
如何將二元一次方程轉化為一次函數(shù)圖像進行求解。
靈活運用不同方法解決二元一次方程組。
教學過程:
一、導入新課
通過復習一元一次方程和一次函數(shù)的'概念,引出二元一次方程和二元一次方程組的概念。提問學生:如果一個問題涉及到兩個未知數(shù),并且這兩個未知數(shù)的次數(shù)都是1,那么我們應該如何表示和求解這個問題呢?
二、講授新課
1. 二元一次方程的概念
定義:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的整式方程叫做二元一次方程。
一般形式:ax + by = c(其中a、b、c為常數(shù),且a、b不同時為零)。
2. 二元一次方程組的解法
介紹兩種常用的解法:代入法和消元法。
通過例題演示這兩種解法的具體步驟和注意事項。
3. 二元一次方程與一次函數(shù)的關系
講解如何將二元一次方程轉化為一次函數(shù)圖像進行求解。
舉例說明:給定二元一次方程x + 2y = 6,可以將其轉化為一次函數(shù)y = -0.5x + 3,并在坐標系中畫出該函數(shù)的圖像,從而找到方程的解。
三、鞏固練習
1. 給出幾個二元一次方程,讓學生判斷其是否為二元一次方程。
2. 給出幾個二元一次方程組,讓學生選擇適當?shù)慕夥ㄟM行求解。
3. 給出一些實際問題,讓學生將其轉化為二元一次方程或二元一次方程組進行求解。
四、課堂小結
1. 總結二元一次方程和二元一次方程組的概念、解法以及它們與一次函數(shù)的關系。
2. 強調在解決實際問題時,要靈活運用所學知識,選擇適當?shù)姆椒ㄟM行求解。
五、布置作業(yè)
1. 完成課后習題中關于二元一次方程和二元一次方程組的題目。
2. 預習下一節(jié)內容:三元一次方程組的解法。
教學反思:
在教學過程中,要注重培養(yǎng)學生的抽象思維能力和邏輯推理能力。通過例題和練習,讓學生逐步掌握二元一次方程組的解法以及它們與一次函數(shù)的關系。同時,要關注學生的學習情況,及時給予指導和幫助,確保每位學生都能跟上教學進度。
二元一次方程與一次函數(shù)教案 6
教學目標:
1. 使學生理解并掌握二元一次方程的概念及其解法。
2. 幫助學生認識到二元一次方程與一次函數(shù)之間的內在聯(lián)系。
3. 培養(yǎng)學生運用二元一次方程和一次函數(shù)解決實際問題的能力。
4. 提升學生的邏輯思維能力和數(shù)學建模能力。
教學重難點:
重點:二元一次方程的解法及與一次函數(shù)的轉換。
難點:理解二元一次方程解集與一次函數(shù)圖像之間的關系。
教學準備:
教具:黑板、白板筆、多媒體設備、教學PPT。
學具:筆記本、筆、計算器(可選)。
教學過程:
一、導入新課
情境引入:通過生活實例(如購物問題、行程問題等)設置情境,引導學生思考如何建立數(shù)學模型描述這些實際問題。
提出問題:根據(jù)情境,引導學生提出可以用二元一次方程解決的問題,并嘗試用自然語言描述問題中的關系。
二、新知講解
概念講解:
定義二元一次方程:介紹二元一次方程的基本形式ax + by = c(a, b, c為常數(shù),a, b不同時為零)。
講解二元一次方程的解法:重點介紹代入法和消元法,并通過例題示范。
一次函數(shù)回顧:
回顧一次函數(shù)y = mx + b的定義和性質。
建立聯(lián)系:
引導學生發(fā)現(xiàn),給定一個二元一次方程,可以通過令y = ax + b(其中b需通過方程變形得到)的方式,將其轉化為一次函數(shù)的形式,反之亦然。
討論二元一次方程的解集與一次函數(shù)圖像(直線)上的點之間的關系。
三、實踐探究
例題解析:
通過幾道典型例題,展示如何將實際問題轉化為二元一次方程,并通過解方程找到答案。
強調解方程過程中如何有效利用一次函數(shù)的圖像輔助理解和求解。
小組活動:
分組讓學生自行設計或選擇包含二元一次方程的`實際問題,嘗試建立方程并求解,最后分享討論。
四、拓展延伸
應用討論:
討論二元一次方程和一次函數(shù)在其他學科或現(xiàn)實生活中的應用實例,如經(jīng)濟學、物理學等。
數(shù)學文化:
簡要介紹二元一次方程和一次函數(shù)的歷史背景,增加學生的數(shù)學文化素養(yǎng)。
五、總結反饋
課堂總結:
回顧本節(jié)課的主要內容,強調二元一次方程與一次函數(shù)之間的緊密聯(lián)系。
學生反饋:
鼓勵學生提出疑問,進行解答;收集學生對本節(jié)課的反饋,以便后續(xù)教學調整。
六、作業(yè)布置
完成課后習題,包括幾道將實際問題轉化為二元一次方程并求解的題目。
探究題:尋找一個日常生活中的問題,嘗試建立二元一次方程模型并求解,撰寫簡短報告。
教學反思:
課后,教師應反思教學過程中的亮點與不足,特別是學生對二元一次方程與一次函數(shù)關聯(lián)的理解程度,以及教學活動的效果,為后續(xù)教學提供改進方向。
二元一次方程與一次函數(shù)教案 7
教學目標:
1. 知識與技能:
學生能夠理解二元一次方程的概念,并能識別其標準形式。
學生能夠掌握將二元一次方程轉化為一次函數(shù)的方法。
學生能夠利用一次函數(shù)的圖像解決二元一次方程組的解的問題。
2. 過程與方法:
通過實例分析,引導學生觀察、思考,發(fā)現(xiàn)二元一次方程與一次函數(shù)的關系。
采用小組討論的形式,促進學生間的交流與合作,共同探索解決問題的`方法。
利用多媒體教學手段,直觀展示一次函數(shù)的圖像,幫助學生理解方程的解。
3. 情感態(tài)度與價值觀:
激發(fā)學生對數(shù)學學習的興趣,培養(yǎng)學生的觀察力和邏輯思維能力。
培養(yǎng)學生團隊合作的精神,以及解決問題的耐心和細心。
增強學生的數(shù)學應用意識,認識到數(shù)學與生活的緊密聯(lián)系。
教學重點與難點:
重點:二元一次方程與一次函數(shù)的相互轉化,以及利用一次函數(shù)圖像求解二元一次方程組。
難點:理解二元一次方程組的解在一次函數(shù)圖像上的幾何意義。
教學過程:
1. 導入新課:
提出問題:小明和小華共有100元錢,小明比小華多20元,問小明和小華各有多少元?
學生嘗試用一元一次方程求解,發(fā)現(xiàn)無法直接解決,從而引出二元一次方程的概念。
2. 新知講授:
定義二元一次方程:介紹二元一次方程的標準形式,并給出幾個實例讓學生識別。
二元一次方程與一次函數(shù)的關系:通過實例演示,將二元一次方程的一個變量視為常數(shù),從而轉化為一次函數(shù)的形式。
利用圖像求解:利用多媒體展示一次函數(shù)的圖像,講解如何通過圖像找到二元一次方程組的解。
3. 鞏固練習:
學生分組,每組選取一個二元一次方程組,嘗試將其轉化為一次函數(shù),并繪制圖像求解。
小組間交流討論,分享求解過程及結果,教師巡回指導,及時糾正錯誤。
4. 拓展延伸:
提出問題:如果小明和小華的錢數(shù)關系發(fā)生變化,如何調整二元一次方程?
學生思考并嘗試修改方程,再次求解,加深對二元一次方程與一次函數(shù)關系的理解。
5. 課堂小結:
回顧本節(jié)課學習的內容,強調二元一次方程與一次函數(shù)的關系,以及利用圖像求解的方法。
鼓勵學生分享本節(jié)課的收獲和疑問,教師進行總結和解答。
6. 布置作業(yè):
編寫幾道與本節(jié)課內容相關的練習題,要求學生獨立完成,鞏固所學知識。
預習下一節(jié)課的內容,了解三元一次方程的概念及求解方法。
教學評價:
通過課堂觀察,評估學生對二元一次方程與一次函數(shù)關系的理解程度。
通過小組討論和練習題的完成情況,評估學生的合作能力和解決問題的能力。
通過課后作業(yè)的完成情況,評估學生對本節(jié)課知識的掌握程度及預習習慣。
【二元一次方程與一次函數(shù)教案】相關文章:
二元一次方程與一次函數(shù)北師大版數(shù)學初二上冊教案01-03
二元一次方程組教學反思03-26
二元一次方程組教學反思05-15
解二元一次方程組教學反思03-29
初一數(shù)學二元一次方程組教案(精選10篇)04-14
二元一次方程組教學反思15篇04-07
解二元一次方程組教學反思15篇04-07
消元解二元一次方程組教學反思04-22
初二數(shù)學一次函數(shù)教案12-09