熟妇人妻中文字幕在线视频_无码人妻精品视频_久久躁夜夜躁狠狠躁_偷碰人妻无码视频

現(xiàn)在位置:范文先生網(wǎng)>心得體會(huì)>教學(xué)反思>倍數(shù)和因數(shù)教學(xué)反思

倍數(shù)和因數(shù)教學(xué)反思

時(shí)間:2023-01-16 08:57:49 教學(xué)反思 我要投稿

倍數(shù)和因數(shù)教學(xué)反思

  身為一名人民老師,我們要在課堂教學(xué)中快速成長(zhǎng),對(duì)教學(xué)中的新發(fā)現(xiàn)可以寫(xiě)在教學(xué)反思中,如何把教學(xué)反思做到重點(diǎn)突出呢?下面是小編整理的倍數(shù)和因數(shù)教學(xué)反思,希望對(duì)大家有所幫助。

倍數(shù)和因數(shù)教學(xué)反思

倍數(shù)和因數(shù)教學(xué)反思1

  教學(xué)中我發(fā)現(xiàn)倍數(shù)和因數(shù)這一內(nèi)容與原來(lái)教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎(chǔ)上認(rèn)識(shí)因數(shù)倍數(shù)。而這里的處理的方法有所不同,我在教學(xué)時(shí)做了一些改動(dòng),讓學(xué)生用12個(gè)小正方形擺長(zhǎng)方形,然后自己用算式把擺法表示出來(lái)。這樣學(xué)生的算是就不局限于乘法,有一部分學(xué)生寫(xiě)了除法算式。這樣學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。因?yàn)楝F(xiàn)在也有很多學(xué)生學(xué)習(xí)奧賽,所以我從整除的角度也介紹了因數(shù)與倍數(shù)的概念.由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動(dòng)的接受。如讓學(xué)生思考:你覺(jué)得3和12、4和12之間有什么關(guān)系呢?(對(duì)乘除法學(xué)生有著相當(dāng)豐富的經(jīng)驗(yàn),因此不少學(xué)生能說(shuō)出倍數(shù)關(guān)系,可能說(shuō)得不很到位,但那是學(xué)生自己的東西)。當(dāng)學(xué)生認(rèn)識(shí)了倍數(shù)之后,我進(jìn)行了設(shè)問(wèn):12是3的倍數(shù),那反過(guò)來(lái)3和12是什么關(guān)系呢?盡管學(xué)生無(wú)法回答,但卻給了他思考和接受“因數(shù)”的空間,使學(xué)生體會(huì)到12是3的倍數(shù),反過(guò)來(lái)3就是12的'因數(shù),接下來(lái)4和12的關(guān)系,學(xué)生都爭(zhēng)者要回答。

  如何做到既不重復(fù)又不遺漏地找36的因數(shù),對(duì)于剛剛對(duì)倍數(shù)因數(shù)有個(gè)感性認(rèn)識(shí)的學(xué)生來(lái)說(shuō)有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢(shì)。先讓學(xué)生自己獨(dú)立找36的因數(shù),我巡視了一下五分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫(xiě)的算式不按一定的次序進(jìn)行。接著讓學(xué)生在小組里討論兩個(gè)問(wèn)題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過(guò)程中,學(xué)生對(duì)自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這不老師給予有有效得多。

倍數(shù)和因數(shù)教學(xué)反思2

  北師大版五年級(jí)數(shù)學(xué)上、第三單元第一節(jié)《倍數(shù)與因數(shù)》是一節(jié)概念課。關(guān)于“倍數(shù)和因數(shù)”教材中沒(méi)有寫(xiě)出具體的數(shù)學(xué)意義,只是借助乘法算式加以說(shuō)明,進(jìn)而讓學(xué)生探究尋找一個(gè)數(shù)的倍數(shù)和因數(shù)。通過(guò)備課,我梳理出這樣一個(gè)教學(xué)脈絡(luò):乘法算式——倍數(shù)和因數(shù)——乘法算式——找一個(gè)數(shù)的倍數(shù)。從教材本身來(lái)看,這部分知識(shí)對(duì)于五年級(jí)學(xué)生而言,沒(méi)有什么生活經(jīng)驗(yàn),也談不上有什么新興趣,是一節(jié)數(shù)學(xué)味很濃的概念課。如何借助教材這一載體,讓學(xué)生在互動(dòng)、探究中掌握相應(yīng)的知識(shí),讓乏味變成有味呢?我從以下兩個(gè)方面談一點(diǎn)教學(xué)體會(huì)。

  一、設(shè)疑遷移,點(diǎn)燃學(xué)習(xí)的火花。

  良好的開(kāi)頭是成功的一半。我采用一道腦筋急轉(zhuǎn)彎題作為談話引入課題,不僅可以調(diào)動(dòng)學(xué)生的學(xué)習(xí)興趣,看似不相關(guān)的兩件事例中隱藏著共同點(diǎn):一一對(duì)應(yīng)、相互依存。對(duì)感知倍數(shù)和因數(shù)進(jìn)行有效的滲透和拓展。

  教學(xué)找一個(gè)數(shù)的倍數(shù)時(shí),我依據(jù)學(xué)情,設(shè)計(jì)讓學(xué)生獨(dú)立探究尋找2的倍數(shù)、5的倍數(shù),學(xué)生發(fā)現(xiàn)2的倍數(shù)、5的倍數(shù)寫(xiě)不完時(shí),通過(guò)討論,認(rèn)為用省略號(hào)表示比較恰當(dāng),用語(yǔ)文中的'一個(gè)標(biāo)點(diǎn)符號(hào)解決了數(shù)學(xué)問(wèn)題,自己發(fā)現(xiàn)問(wèn)題自己解決,學(xué)生從中體驗(yàn)到解決問(wèn)題的愉快感和掌握新知的成就感。

  二、滲透學(xué)法,形成學(xué)習(xí)的技能。

  由于一個(gè)數(shù)倍數(shù)的個(gè)數(shù)是無(wú)限的,那么如何讓學(xué)生體會(huì)“無(wú)限”、又如何有序?qū)懗鰜?lái)呢?我讓學(xué)生嘗試說(shuō)出3的倍數(shù)。學(xué)生找倍數(shù)的方法有:依次加3、依次乘1、2、3……、用乘法口訣等等。我組織學(xué)生展開(kāi)評(píng)價(jià),有的學(xué)生認(rèn)為:從小到大依次寫(xiě),因?yàn)橛行,所以覺(jué)得好;有的學(xué)生認(rèn)為:用乘法算式寫(xiě)倍數(shù),既快而且不受前面倍數(shù)的影響,可以很快地找到第幾個(gè)倍數(shù)是多少,因?yàn)楹?jiǎn)捷正確率高所以覺(jué)得好。如此的交流雖然花費(fèi)了“寶貴”的學(xué)習(xí)時(shí)間,但是學(xué)生從中能體會(huì)到學(xué)習(xí)的方法,發(fā)展了思維,這才是最寶貴的。正所謂沒(méi)有一路上的山花爛漫,哪有山頂上的風(fēng)光無(wú)限。

  三、學(xué)練結(jié)合,及時(shí)把握學(xué)生學(xué)情。

  在學(xué)生通過(guò)具體例子初步認(rèn)識(shí)了倍數(shù)和因數(shù)以后,通過(guò)大量的練習(xí)讓學(xué)生在練習(xí)中感悟,練習(xí)中加深理解概念;在探究出找倍數(shù)的方法以后,及時(shí)讓學(xué)生寫(xiě)出2的倍數(shù)、5的倍數(shù),從而引導(dǎo)學(xué)生發(fā)現(xiàn)一個(gè)數(shù)的倍數(shù)的特點(diǎn),并適時(shí)進(jìn)行針對(duì)性練習(xí),鞏固新知。

  課尾,我設(shè)計(jì)了四道達(dá)標(biāo)檢測(cè)練習(xí),將整堂課的內(nèi)容進(jìn)行整理和概括,對(duì)易混淆的概念加以比較,對(duì)本節(jié)課重要知識(shí)點(diǎn)進(jìn)行檢測(cè),及時(shí)掌握了學(xué)生的學(xué)情。

  縱觀整節(jié)課,學(xué)生在學(xué)習(xí)過(guò)程中自始至終處于主體地位,嘗試練習(xí)、自主探索、解決問(wèn)題,教師只是加以引導(dǎo),以合作者的身份參與其中。學(xué)生在思維上得到了訓(xùn)練,探究問(wèn)題、尋求解決問(wèn)題策略的能力也會(huì)逐步得到提高。

倍數(shù)和因數(shù)教學(xué)反思3

  這節(jié)課帶給我的感想是頗多的,但綜觀整堂課,我覺(jué)得要改進(jìn)的地方還有很多,我只有不斷地進(jìn)行反思,才能不斷地完善思路,最終才能有所悟,有所長(zhǎng)。下面就說(shuō)說(shuō)我對(duì)本課在教學(xué)設(shè)計(jì)上的反思和一些初淺的想法。

  本單元內(nèi)容在編排上與老教材有較大的差異,比如在認(rèn)識(shí)“因數(shù)、倍數(shù)”時(shí),不再運(yùn)用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒(méi)出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。本課的教學(xué)重點(diǎn)是求一個(gè)數(shù)的因數(shù),在學(xué)生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎(chǔ)上,對(duì)學(xué)生而言,怎樣求一個(gè)數(shù)的因數(shù),難度并不算大,因此教學(xué)例題“找出18的因數(shù)”時(shí),我先放手讓學(xué)生自己找,學(xué)生在獨(dú)立思考的過(guò)程中,自然而然的會(huì)結(jié)合自己對(duì)因數(shù)概念的理解,找到解決問(wèn)題的方法(培養(yǎng)學(xué)生對(duì)已有知識(shí)的運(yùn)用意識(shí)),然后在交流中不難發(fā)現(xiàn)可用乘法或除法來(lái)求一個(gè)數(shù)的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的除法算式)。在這個(gè)學(xué)習(xí)活動(dòng)環(huán)節(jié)中,我留給了學(xué)生較充分的思維活動(dòng)的空間,有了自由活動(dòng)的空間,才會(huì)有思維創(chuàng)造的火花,才能體現(xiàn)教育活動(dòng)的終極目標(biāo)。特別是用除法找因數(shù)的學(xué)生,正是因?yàn)樗麄円庾R(shí)到了因數(shù)與倍數(shù)之間的整除關(guān)系的本質(zhì),才會(huì)想到用除法來(lái)解決問(wèn)題,我也不由得佩服這些孩子對(duì)知識(shí)的遷移能力。在這個(gè)環(huán)節(jié)的處理上,教材的本意是先由教師提出“想一想,幾和幾相乘得18?”引導(dǎo)學(xué)生從因數(shù)的概念,用乘法來(lái)找因數(shù),而我考慮到本班孩子的學(xué)情(絕大多數(shù)學(xué)生能夠運(yùn)用所學(xué)知識(shí),找到求因數(shù)的方法),如教師一開(kāi)始就引導(dǎo)學(xué)生:想幾和幾相乘,勢(shì)必會(huì)造成先入為主,妨礙學(xué)生創(chuàng)造性的思維活動(dòng)?用已有的經(jīng)驗(yàn)自主建構(gòu)新知是提高學(xué)生學(xué)習(xí)能力的有效途徑,讓學(xué)生獨(dú)立思考、自主探索、促思(促進(jìn)學(xué)生思維發(fā)展)、提能(提高學(xué)習(xí)能力)是我的教學(xué)策略主要內(nèi)容。至于這兩種方法孰重孰輕,的確難以定論。實(shí)際上,對(duì)于數(shù)字較小的數(shù)(口訣表內(nèi)的),用乘法來(lái)求因數(shù)還是比較容易,但是超出口訣表范圍的數(shù)用除法則更能顯示出它的優(yōu)勢(shì),如求54的因數(shù)有哪些?學(xué)生要直接找出2和幾相乘得54,3和幾相乘得54,4和幾相乘得54,顯然加大了思維難度,如用除法不是更簡(jiǎn)單直接一些嗎?學(xué)生的學(xué)習(xí)潛力是巨大的,教師是學(xué)生學(xué)習(xí)的引領(lǐng)者,因此教師的觀念和行為決定了學(xué)生的學(xué)習(xí)方式和結(jié)果,所以我認(rèn)為教師要專研教材,充分利用教材,根據(jù)學(xué)生的實(shí)際情況,創(chuàng)造性地使用教材,為學(xué)生能力的發(fā)展提供素材和創(chuàng)造條件,真正實(shí)現(xiàn)學(xué)生學(xué)習(xí)的主體地位。

  學(xué)生在找一個(gè)數(shù)的.因數(shù)時(shí)最常犯的錯(cuò)誤就是漏找,即找不全。學(xué)生怎樣按一定順序找全因數(shù)這也正是本課教學(xué)的難點(diǎn)。所以在學(xué)生交流匯報(bào)時(shí),我結(jié)合學(xué)生所敘思維過(guò)程,相機(jī)引導(dǎo)并形成有條理的板書(shū),如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。這樣的板書(shū)幫助學(xué)生有序的思考,形成明晰的解題思路的作用是毋庸質(zhì)疑的。教師能像教材中那樣一頭一尾地成對(duì)板書(shū)因數(shù),這樣既不容易寫(xiě)漏,而且學(xué)生么隨著流程的進(jìn)行,勢(shì)必會(huì)感受到越往下找,區(qū)間越小,需要考慮的數(shù)也就越少。當(dāng)找到兩個(gè)相鄰的自然數(shù)時(shí),他們自然就不會(huì)再找下去了。書(shū)寫(xiě)格式這一細(xì)節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點(diǎn),我相信像這樣潤(rùn)物無(wú)聲的細(xì)節(jié),無(wú)論于學(xué)生、于課堂都是有利無(wú)弊的。

倍數(shù)和因數(shù)教學(xué)反思4

  一、教材與知識(shí)點(diǎn)的對(duì)比與區(qū)別。

  1、對(duì)比新版教材知識(shí)設(shè)置與傳統(tǒng)教材的區(qū)別。有關(guān)數(shù)論的這部分知識(shí)是傳統(tǒng)教學(xué)內(nèi)容但教材在傳承以往優(yōu)秀做法的同時(shí)也進(jìn)行了較大幅度的改動(dòng)。無(wú)論是從宏觀方面——內(nèi)容的劃分還是從微觀方面——具體內(nèi)容的設(shè)計(jì)上都獨(dú)具匠心。“因數(shù)與倍數(shù)”的認(rèn)識(shí)與原教材有以下兩方面的區(qū)別1新課標(biāo)教材不再提“整除”的概念也不再是從除法算式的觀察中引入本單元的學(xué)習(xí)而是反其道而行之通過(guò)乘法算式來(lái)導(dǎo)入新知。2“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在教師必須要認(rèn)真研讀教材深入了解編者意圖才能夠正確、靈活駕馭教材。因此我通過(guò)學(xué)習(xí)教參了解到以下信息學(xué)生的原有知識(shí)基礎(chǔ)是在已經(jīng)能夠區(qū)分整除與余數(shù)除法對(duì)整除的含義有比較清楚的認(rèn)識(shí)不出現(xiàn)整除的`定義并不會(huì)對(duì)學(xué)生理解其他概念產(chǎn)生任何影響。因此本教材中刪去了“整除”的數(shù)學(xué)化定義。

  2、相似概念的對(duì)比。1彼“因數(shù)”非此“因數(shù)”。在同一個(gè)乘法算式中兩者都是指乘號(hào)兩邊的整數(shù)但前者是相對(duì)于“積”而言的與“乘數(shù)”同義可以是小數(shù)。而后者是相對(duì)于“倍數(shù)”而言的與以前所說(shuō)的“約數(shù)”同義說(shuō)“X是X的因數(shù)”時(shí)兩者都只能是整數(shù)。2“倍數(shù)”與“倍”的區(qū)別。“倍”的概念比“倍數(shù)”要廣。我們可以說(shuō)“1.5是0.3的5倍”但不能說(shuō)”1.5是0.3的倍數(shù)”。我們?cè)谇笠粋(gè)數(shù)的倍數(shù)時(shí)運(yùn)用的方法與“求一個(gè)數(shù)的幾倍是多少”是相同的只是這里的“幾倍”都是指整數(shù)倍。

  二、教法的運(yùn)用實(shí)踐

  1、“因數(shù)與倍數(shù)”概念的數(shù)的應(yīng)用范圍的規(guī)定直接運(yùn)用講述法。對(duì)與本知識(shí)點(diǎn)的概念是人為規(guī)定的一個(gè)范圍因此對(duì)于學(xué)生和第一接觸的印象是沒(méi)有什么可以探究和探索的要求而且給學(xué)生一個(gè)直觀的感受!耙驍(shù)與倍數(shù)”的運(yùn)用范圍就是在非0自然數(shù)的范疇之內(nèi)與小數(shù)無(wú)關(guān)與分?jǐn)?shù)無(wú)關(guān)與負(fù)數(shù)無(wú)關(guān)雖沒(méi)學(xué)但有小部分學(xué)生了解。同時(shí)強(qiáng)調(diào)——非0——因?yàn)?乘任何數(shù)得00除以任何數(shù)得0。研究它的因數(shù)與倍數(shù)是沒(méi)有意義。我得到的經(jīng)驗(yàn)就是對(duì)于數(shù)學(xué)當(dāng)中規(guī)定性的概念用直接講述法讓學(xué)生清晰明確。因此用直接導(dǎo)入法先復(fù)習(xí)自然數(shù)的概念再寫(xiě)出乘法算式3×4=12說(shuō)明在這個(gè)算式中3和4是12的因數(shù)12是3和4的倍數(shù)。

  2、在進(jìn)行延續(xù)性教學(xué)中可以讓學(xué)生探究怎么樣找一個(gè)數(shù)的因數(shù)和倍數(shù)在板書(shū)要講究一個(gè)格式與對(duì)稱性這樣在對(duì)學(xué)生發(fā)現(xiàn)倍數(shù)與因數(shù)個(gè)數(shù)的有限與無(wú)限的對(duì)比再就是發(fā)現(xiàn)一個(gè)數(shù)的因數(shù)的最小因數(shù)是1最大因數(shù)是其本身。

  【篇三:因數(shù)和倍數(shù)2教學(xué)反思】

  因數(shù)和倍數(shù)是五年級(jí)下冊(cè)第二單元的教學(xué)內(nèi)容,由于知識(shí)較為抽象,學(xué)生不易理解,因此我在教學(xué)時(shí)做到了以下幾點(diǎn):

 。1)密切聯(lián)系生活中的數(shù)學(xué),幫助學(xué)生理解概念間的關(guān)系。

  今天在教學(xué)前,我讓學(xué)生學(xué)說(shuō)話,就是培養(yǎng)學(xué)生對(duì)語(yǔ)言的概括能力和對(duì)事物間關(guān)系的理解能力。于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計(jì)自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系,從而使學(xué)生更深一步的認(rèn)識(shí)倍數(shù)與因數(shù)的關(guān)系,

 。2)改動(dòng)呈現(xiàn)倍數(shù)和因數(shù)概念的方式。我改變了例題,用杯子翻動(dòng)的次數(shù)與杯口朝上的次數(shù)之間的關(guān)系,列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學(xué)習(xí)如何找一個(gè)數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。這樣不僅溝通了乘法和除法的關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。

 。3)根據(jù)學(xué)生的實(shí)際情況,教學(xué)找一個(gè)數(shù)的因數(shù)的方法,雖然學(xué)生不能有序地找出來(lái),但是基本能全部找到,再此基礎(chǔ)上讓體會(huì)有序找一個(gè)數(shù)因數(shù)的辦法學(xué)生容易接受,這樣的設(shè)計(jì)由易到難,由淺入深,我覺(jué)得能起到鞏固新知,發(fā)展思維的效果。

 。4)設(shè)計(jì)有趣游戲活動(dòng),擴(kuò)大學(xué)生思維的空間,培養(yǎng)學(xué)生發(fā)散思維的能力。譬如“找朋友”游戲,答案不唯一,學(xué)生思考問(wèn)題的空間很大,培養(yǎng)了學(xué)生的發(fā)散思維能力。我手里拿了5、17、38幾張數(shù)字卡片,讓學(xué)生判斷自己的`學(xué)號(hào)數(shù)是哪些數(shù)的倍數(shù),是哪些數(shù)的因數(shù),如果學(xué)生的學(xué)號(hào)數(shù)是老師出示卡片的倍數(shù)或因數(shù)就可以站起來(lái)。最后問(wèn)能不能想個(gè)辦法讓所有的學(xué)生都站起來(lái)。出示地卡片應(yīng)該是幾,找的朋友應(yīng)該是倍數(shù)還是因數(shù)?學(xué)生面對(duì)問(wèn)題積極思考,享受了數(shù)學(xué)思維的快樂(lè)。

倍數(shù)和因數(shù)教學(xué)反思5

  《倍數(shù)和因數(shù)》是我們工作室四月份研究的一個(gè)課例,我們是先抽簽上二十分鐘的課堂教學(xué),再進(jìn)行研討,我們研究了每一部分的處理方法,同時(shí),為了讓我們的課堂更加連貫、自然,我們也研究了例題之間的過(guò)渡環(huán)節(jié),嘗試找到更加恰當(dāng)?shù)奶幚矸椒。那次研究之后我們工作室的每一位成員都根據(jù)自己的想法修改了教案。前幾天我們工作室又在活動(dòng)中上了這節(jié)課,這次上課的是我,由于事先準(zhǔn)備的不夠充分課堂中發(fā)現(xiàn)了很多的問(wèn)題,有上次研討過(guò)還需要改進(jìn)的問(wèn)題,也有這次上課出現(xiàn)的新問(wèn)題。課后工作室的成員給了我很多的很好的建議,我根據(jù)好的建議修改了我的教學(xué)設(shè)計(jì),下面我來(lái)具體的說(shuō)一說(shuō)。

  1、情境導(dǎo)入。本節(jié)課的內(nèi)容是《倍數(shù)和因數(shù)》為了讓學(xué)生更清楚地感受倍數(shù)和因數(shù)的依存關(guān)系,我課上用了大頭兒子和小頭爸爸的例子,也用了我是老師,他們是學(xué)生的例子。但這兩個(gè)例子對(duì)于本課的教學(xué)或許沒(méi)有太多的意義,好像不能讓學(xué)生明確感受出倍數(shù)的'因數(shù)的依存關(guān)系,所以我們可以把這一部分的內(nèi)容去掉,直接進(jìn)入課堂,讓學(xué)生進(jìn)行操作活動(dòng)。

  2、倍數(shù)和因數(shù)的意義。本課是想通過(guò)用12個(gè)完全相同的正方形拼成長(zhǎng)方形的活動(dòng)來(lái)讓學(xué)生在活動(dòng)中初步感知倍數(shù)和因數(shù)的關(guān)系,再用具體的例子向?qū)W生說(shuō)明倍數(shù)和因數(shù)的含義。在課堂中我直接讓學(xué)生進(jìn)行操作,兩人小組活動(dòng),試著擺一擺,看看有沒(méi)有不同的擺法,在交流的時(shí)候讓學(xué)生說(shuō)說(shuō)自己的擺法,每排擺了幾個(gè),擺了幾排,怎樣用乘法算式表示,再讓學(xué)生有序地說(shuō)一說(shuō),為后面找一個(gè)數(shù)的因數(shù)做好鋪墊。再有一道具體的算式舉例說(shuō)明倍數(shù)和因數(shù)的含義,用我們過(guò)去學(xué)習(xí)的乘法算式中的乘數(shù)乘乘數(shù)等于積過(guò)渡到倍數(shù)和因數(shù),再讓學(xué)生說(shuō)一說(shuō)其他兩道乘法算式。說(shuō)完后再給學(xué)生一個(gè)提醒,并讓學(xué)生再根據(jù)出示的算式說(shuō)一說(shuō)誰(shuí)是誰(shuí)的倍數(shù)和誰(shuí)是誰(shuí)的因數(shù),最后的時(shí)候讓學(xué)生自己寫(xiě)一個(gè)算式,并說(shuō)一說(shuō)。

  3、找一個(gè)數(shù)的倍數(shù)。這應(yīng)該時(shí)本節(jié)課的重難點(diǎn)內(nèi)容,在教學(xué)中一定要讓學(xué)生說(shuō)一說(shuō)找倍數(shù)的方法,而我在上課的時(shí)候把這一個(gè)重要的部分一帶而過(guò),可以看出來(lái)很大一部分學(xué)生是沒(méi)有掌握找倍數(shù)的方法的。所以我在思考這一難點(diǎn)該如何突破?是不是應(yīng)讓學(xué)生先獨(dú)立想一想辦法,多說(shuō)一說(shuō),給學(xué)生足夠多的時(shí)間讓學(xué)生去說(shuō)自己用來(lái)找倍數(shù)的方法,這樣多種方法出來(lái)以后,我們可以對(duì)方法進(jìn)行優(yōu)化,選擇快速簡(jiǎn)單的找法。在教學(xué)的時(shí)候,同時(shí)注培養(yǎng)學(xué)生有序?qū)懗霰稊?shù),注意倍數(shù)書(shū)寫(xiě)的格式等意識(shí),可以比較有序的找和無(wú)序的找,讓學(xué)生自己感受有序的好處,學(xué)生有了有序地找的基本方法后,在進(jìn)行練習(xí)的時(shí)候也會(huì)選擇剛才優(yōu)化過(guò)的好的方法進(jìn)行練習(xí)。

  4、找倍數(shù)的特征。在完成找一個(gè)數(shù)的倍數(shù)之后,我們可以直接出示3,2,5的倍數(shù)是哪些,讓學(xué)生觀察三個(gè)倍數(shù),再說(shuō)一說(shuō)自己的發(fā)現(xiàn),放手讓學(xué)生去找或許學(xué)生能夠很快的找出來(lái),但如果給好具體的問(wèn)題,可能會(huì)限制一些學(xué)生的思考。如果學(xué)生在觀察時(shí)沒(méi)有發(fā)現(xiàn)我們所想要總結(jié)的特征,可以對(duì)學(xué)生進(jìn)行適當(dāng)?shù)奶崾,讓學(xué)生觀察一個(gè)數(shù)最小的倍數(shù),最大的倍數(shù)和倍數(shù)的個(gè)數(shù)等。先給學(xué)生足夠的時(shí)間讓學(xué)生自己去找,我們要相信他們藕能力做到。

  5、課堂常規(guī)的問(wèn)題。在上課之前我應(yīng)先確定好小組的具體分配,以免學(xué)生在小組活動(dòng)中找不到合作的對(duì)象,如果上課之前具體的分好了,小組討論的效率會(huì)高很多。在上課時(shí),我要少說(shuō),把更多說(shuō)的機(jī)會(huì)留給學(xué)生,讓學(xué)生去表達(dá)自己的想法,同時(shí)還要相信學(xué)生,不要怕學(xué)生不會(huì),而給出很多的條條框框,限制了學(xué)生的思維發(fā)展。

倍數(shù)和因數(shù)教學(xué)反思6

  這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)帶給足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動(dòng)化、合作化和情意化,具體做到了以下幾點(diǎn):

  一、尊重教材,引導(dǎo)學(xué)生實(shí)現(xiàn)從形象向抽象的飛躍。

  教材中首先引導(dǎo)學(xué)生理解數(shù)與數(shù)之間的關(guān)系,進(jìn)而用乘法算式把不一樣的列法表示出來(lái),再根據(jù)乘法算式教學(xué)倍數(shù)和因數(shù)的好處。這部分資料學(xué)生初次接觸,對(duì)于學(xué)生來(lái)說(shuō)是比較難掌握的資料。首先是名稱比較抽象,在現(xiàn)實(shí)生活中又不經(jīng)常接觸,對(duì)這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、決定,需要一個(gè)長(zhǎng)期的消化理解的過(guò)程。

  這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)帶給足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動(dòng)化、合作化和情意化,

  二、細(xì)化過(guò)程,讓學(xué)生在充分交流中感悟理解倍數(shù)和因數(shù)的好處。

  倍數(shù)和因數(shù)的好處是本單元的重要知識(shí),其他資料的教學(xué)都以此為基礎(chǔ)。在學(xué)生得出乘法算式后,首先引導(dǎo)學(xué)生觀察3×4=12這道算式,邊指著算式邊先介紹“12是3的倍數(shù)”,然后啟發(fā)學(xué)生“看著算式你還能想到什么?”很多學(xué)生已經(jīng)領(lǐng)會(huì)12也是4的倍數(shù),指名說(shuō)后,再?gòu)?qiáng)化一下讓學(xué)生連起來(lái)說(shuō)說(shuō)誰(shuí)是誰(shuí)的倍數(shù)。之后教學(xué)“3是12的因數(shù)”,再啟發(fā)“這時(shí)你又能想到什么?”學(xué)生很容易聯(lián)想到“4也是12的因數(shù)”,而且學(xué)生的學(xué)習(xí)興趣濃厚、求知欲強(qiáng)。這時(shí)再讓學(xué)生完整的.說(shuō)一說(shuō)誰(shuí)是誰(shuí)的倍數(shù),誰(shuí)是誰(shuí)的因數(shù),已經(jīng)“水到渠成”。在初步感受倍數(shù)和因數(shù)的好處是與乘法有聯(lián)系的,表達(dá)的是自然數(shù)之間的關(guān)系之后,之后練一練讓學(xué)生根據(jù)2×6=12先同桌互相說(shuō)說(shuō)哪個(gè)數(shù)是哪個(gè)數(shù)的倍數(shù)(或因數(shù)),在全班交流。最后根據(jù)1×12=12先指名說(shuō)一說(shuō)哪個(gè)數(shù)是哪個(gè)數(shù)的倍數(shù)(或因數(shù)),再讓學(xué)生輕聲地說(shuō)說(shuō)有點(diǎn)個(gè)性的兩句。

  整個(gè)過(guò)程處理細(xì)致、層次清晰、有扶有放,生生交流、師生交流充分,反饋及時(shí)、兼顧學(xué)困生,讓學(xué)生在遷移中理解倍數(shù)和因數(shù)的好處。

  三、由點(diǎn)及面,巧架平臺(tái),讓學(xué)生在師生互動(dòng)中建立完整的數(shù)學(xué)模型。

  找一個(gè)數(shù)的倍數(shù)或因數(shù),既能鞏固倍數(shù)和因數(shù)的好處,也為研究倍數(shù)的特征及好處作準(zhǔn)備。探索找一個(gè)數(shù)的倍數(shù)或因數(shù)的方法時(shí),重點(diǎn)是幫忙學(xué)生建立相應(yīng)的數(shù)學(xué)模型。

  探索求一個(gè)數(shù)因數(shù)的方法是本課的難點(diǎn),例題直接安排找24的因數(shù)更是困難。教學(xué)中我還是利用3×4=12做鋪墊,引導(dǎo)學(xué)生先找一找12的因數(shù),初步感知了找因數(shù)的方法。然后層層推進(jìn),先讓學(xué)生想一道算式找24的因數(shù),引出根據(jù)除法找因數(shù)的方法,再讓學(xué)生按除法通過(guò)自主探究找出24的所有因數(shù),之后組織學(xué)生比較、討論、優(yōu)化提升出找一個(gè)數(shù)的因數(shù)的方法。

  教學(xué)4的倍數(shù)時(shí),學(xué)生在4×4=16的鋪墊下,很容易找到一個(gè)或幾個(gè)4的倍數(shù),但是想要“一個(gè)不漏且有序的找全,并體會(huì)出4的倍數(shù)的個(gè)數(shù)是無(wú)限的”卻很難。如何引導(dǎo)學(xué)生建構(gòu)完整的倍數(shù)的數(shù)學(xué)模型呢?我遵循學(xué)生的認(rèn)知規(guī)律,然后引導(dǎo)學(xué)生按從小到大的順序整理,之后向兩頭延伸:有比4更小的嗎?之后4×2=8,4×3=12,4×4=16,…像這樣說(shuō)下去說(shuō)得完嗎?4的倍數(shù)的特點(diǎn)逐步在學(xué)生的腦海中得以完善、合理建構(gòu)。

  這樣搭建了有效的平臺(tái)、構(gòu)成了師生互動(dòng)生成的過(guò)程,學(xué)生經(jīng)歷了無(wú)序、不完整逐步由點(diǎn)及面向有序、完整的思維邁進(jìn),有效的建構(gòu)了數(shù)學(xué)模型。

倍數(shù)和因數(shù)教學(xué)反思7

  反思教學(xué)效果總結(jié)了的原因有以下幾點(diǎn):

 。ㄒ唬┧?cái)?shù)和合數(shù)的判斷不熟練。一些數(shù)如:49、51、91這些數(shù)看上去是素?cái)?shù),但其實(shí)是合數(shù)。這些數(shù)經(jīng)常被學(xué)生誤認(rèn)為是素?cái)?shù)而導(dǎo)致錯(cuò)誤,原因是這些學(xué)生就簡(jiǎn)單的看看,而不愿意用2、3、5等素?cái)?shù)去嘗試,努力尋找是不是有第3個(gè)因數(shù)存在。

 。ǘ┮馑枷嗤Z(yǔ)句表述不同時(shí),有的學(xué)生就不能正確理解。如:在上面的數(shù)只有兩個(gè)因數(shù)的數(shù)有哪些?其實(shí)這道題目就是問(wèn)在上面的數(shù)中素?cái)?shù)有哪些。

 。ㄈ┯械膶W(xué)生缺少分析理解,研究和判斷的能力,判斷和選擇題的錯(cuò)誤比較多。例如:1的倍數(shù)肯定是奇數(shù)。如果一個(gè)學(xué)生先找到1的倍數(shù),然后根據(jù)數(shù)的特點(diǎn)作出正確的判斷。但有的學(xué)生看到1是個(gè)奇數(shù),然后就簡(jiǎn)單地做出它的倍數(shù)也是奇數(shù)想法。例如:一個(gè)數(shù)的倍數(shù)一定比它的因數(shù)大。如果學(xué)生找一個(gè)數(shù),看看它的最小倍數(shù)是哪個(gè)?找找它的最大因數(shù)是哪個(gè)?這樣不難找到正確的答案。但是有的倍數(shù)簡(jiǎn)單地被題目的意思誤導(dǎo),加上平時(shí)的練習(xí)中還有倍數(shù)一般都是大的,因數(shù)一般都是小的概念,學(xué)生容易誤判。

  教學(xué)中,我和學(xué)生有時(shí)太滿足于平時(shí)練習(xí)的結(jié)果,而缺少讓學(xué)生進(jìn)行數(shù)學(xué)思考和表達(dá)能力的過(guò)程訓(xùn)練。看來(lái)在以后的教學(xué)中,我要繼續(xù)改變教學(xué)觀念,要高度尊重學(xué)生,依靠學(xué)生,把以往教學(xué)中主要依靠教師轉(zhuǎn)變?yōu)橐揽繉W(xué)生。

  建議

  1、在新知教學(xué)中,注重引導(dǎo)學(xué)生進(jìn)行探究。在本單元中找一個(gè)數(shù)的倍數(shù)和因數(shù),都有比較好的方法。如何通過(guò)學(xué)生的探究找到方法,成了教學(xué)的亮點(diǎn)。如“找36的因數(shù)” ,找一個(gè)數(shù)的因數(shù)是本課的難點(diǎn)。應(yīng)該說(shuō),找出36的幾個(gè)因數(shù)并不難,難就難在找出36的所有因數(shù)。教學(xué)中,建議教師不要把方法簡(jiǎn)單地告訴學(xué)生,而是讓學(xué)生獨(dú)立去探究,獨(dú)立寫(xiě)出36的所有因數(shù),在學(xué)生反饋的基礎(chǔ)上教師再引導(dǎo)學(xué)生對(duì)有序和無(wú)序作比較,學(xué)生才能在比較、交流中感悟有序思考的必要性和科學(xué)性。交流的過(guò)程正是學(xué)生相互補(bǔ)充、相互接納的過(guò)程,是對(duì)學(xué)習(xí)內(nèi)容進(jìn)行深加工和重組知識(shí)的過(guò)程,是學(xué)生的認(rèn)知不斷走向深入,思維水平不斷提升的過(guò)程。這是新知探究階段的思維交流。既是不斷深化理解因數(shù)與倍數(shù)知識(shí)的過(guò)程,又是培養(yǎng)學(xué)生良好思維品質(zhì)的過(guò)程。給學(xué)生獨(dú)立思考的空間,提出了各自的解法或見(jiàn)解,是思維獨(dú)創(chuàng)性的培養(yǎng);引導(dǎo)學(xué)生一對(duì)一對(duì)有序的找,或從1開(kāi)始,用除法一個(gè)個(gè)去試,是思維條理性的培養(yǎng);既有遷移于擺方塊的形象思維,又有直接運(yùn)用除法算式的抽象思維,或乘除法口訣的綜合運(yùn)用等,在感受解法多樣性中,培養(yǎng)了學(xué)生思維的靈活性。

  2、寓教于樂(lè),游戲中進(jìn)行相應(yīng)的鞏固練習(xí)。本節(jié)課是一節(jié)概念課,內(nèi)容比較枯燥,課本上的練習(xí)形式也比較單一,所以在認(rèn)識(shí)倍數(shù)和因數(shù)后,應(yīng)安排有趣味的游戲,比如數(shù)字轉(zhuǎn)盤(pán)游戲,讓學(xué)生看轉(zhuǎn)盤(pán)說(shuō)指針停止時(shí),內(nèi)圈的數(shù)與外圈的數(shù)的關(guān)系,進(jìn)一步認(rèn)識(shí)倍數(shù)和因數(shù),又能從中發(fā)現(xiàn)倍數(shù)和因數(shù)的相互依存的.關(guān)系。在學(xué)會(huì)找倍數(shù)和因數(shù)之后也可設(shè)計(jì)游戲,如:“猜猜一位老師的電話號(hào)碼”,在一個(gè)八位數(shù)的號(hào)碼中已知其中四位,根據(jù)有關(guān)倍因數(shù)關(guān)系的問(wèn)題請(qǐng)學(xué)生找出未知的四位號(hào)碼,以提高學(xué)生學(xué)習(xí)的積極性,稍有難度的練習(xí)給學(xué)有余力的學(xué)生一個(gè)證明自己能力的機(jī)會(huì),讓學(xué)生在數(shù)學(xué)活動(dòng)中體驗(yàn)到數(shù)學(xué)學(xué)習(xí)的趣味性和挑戰(zhàn)性,學(xué)生運(yùn)用所學(xué)知識(shí)解決問(wèn)題,體會(huì)到了學(xué)習(xí)新知識(shí)后的成就感。

  3、教師要注重評(píng)價(jià)的導(dǎo)向作用,讓學(xué)生在評(píng)價(jià)中成長(zhǎng)。在第一課時(shí)學(xué)生交流12的因數(shù)時(shí),教師展示了三位同學(xué)的作業(yè):第一種是無(wú)序的,第二種是從小到大有序的,第三種是一對(duì)一對(duì)有序的。接著老師讓第一種方法的學(xué)生說(shuō)說(shuō)自己的想法,并讓其他同學(xué)評(píng)論,此時(shí)大多數(shù)學(xué)生的評(píng)價(jià)都認(rèn)為不好,找得缺漏、無(wú)序,這時(shí)其實(shí)作為老師是否可以問(wèn)問(wèn)這種答案“有沒(méi)有值得肯定的地方?”,畢竟找到的這些答案都是正確地,然后再去尋找更好的方法。如果老師能經(jīng)常注意這樣引導(dǎo)評(píng)價(jià),學(xué)生自然而然地意識(shí)到要先看別人的優(yōu)點(diǎn),再看別人的缺點(diǎn),也給了剛才那位學(xué)生一個(gè)心理上的安慰,使他能更積極地投入到學(xué)習(xí)當(dāng)中去。

倍數(shù)和因數(shù)教學(xué)反思8

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。在以往的教材中,都是通過(guò)除法算式來(lái)引出整除的概念,每個(gè)除法算式對(duì)應(yīng)著一對(duì)有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的'人教版教材中沒(méi)有用數(shù)學(xué)語(yǔ)言給“整除”下定義,而是利用一個(gè)簡(jiǎn)單的實(shí)物圖(2行飛機(jī),每行6架)引出一個(gè)乘法算式2×6=12,通過(guò)這個(gè)乘法算式直接給出因數(shù)和倍數(shù)的概念。我覺(jué)得這局部?jī)?nèi)容同學(xué)初次接觸,對(duì)于同學(xué)來(lái)說(shuō)是比較難掌握的內(nèi)容。尤其對(duì)因數(shù)和倍數(shù)和是一對(duì)相互依存的概念,不能單獨(dú)存在,不是很好理解。我通過(guò)捕獲生活與數(shù)學(xué)之間的聯(lián)系,協(xié)助同學(xué)理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意和小朋友們玩了一個(gè)小游戲。用“ 我和誰(shuí)是好朋友”這句話來(lái)理解相互依存的意思。即“我是誰(shuí)的好朋友”,“誰(shuí)是我的好朋友”,而不能說(shuō)“我是好朋友”。同學(xué)對(duì)相互依存理解了,在描述因數(shù)和倍數(shù)的概念時(shí)就不會(huì)說(shuō)錯(cuò)了。對(duì)于這節(jié)課的教學(xué),我特別注意下面幾個(gè)細(xì)節(jié)來(lái)協(xié)助同學(xué)理解因數(shù)和倍數(shù)的概念。

  一是教材雖然不是從過(guò)去的整除定義動(dòng)身,而是通過(guò)一個(gè)乘法算式來(lái)引出因數(shù)和倍數(shù)的概念,但實(shí)質(zhì)上任是以“整除”為基礎(chǔ)。所以我上課時(shí)特別注意讓同學(xué)明白什么情況下才干討論因數(shù)和倍數(shù)的概念。我舉了一些反例加以說(shuō)明。二是要同學(xué)注意區(qū)分乘法算式中的“因數(shù)”和本單元中的“因數(shù)”的聯(lián)系和區(qū)別。在同一個(gè)乘法算式中,兩者都是指乘號(hào)兩邊的整數(shù),但前者是相對(duì)于“積”而言的,與“乘數(shù)”同義,可以是小數(shù),而后者是相對(duì)于“倍數(shù)”而言的,兩者都只能是整數(shù)。三是要注意區(qū)分“倍數(shù)”與前面學(xué)過(guò)的“倍”的聯(lián)系與區(qū)別。“倍”的概念比“倍數(shù)”要廣?梢哉f(shuō)“15是3的5倍”,也可以說(shuō)“1。5是0。3的5倍”,但我們只能說(shuō)“15是3的倍數(shù)”,卻不能說(shuō)“1。5是0。3的倍數(shù)”。我在課堂上反復(fù)強(qiáng)調(diào),協(xié)助小朋友們認(rèn)真理解辨析,所以同學(xué)一節(jié)課下來(lái)對(duì)這組概念就理解透徹了,不會(huì)模糊了。

倍數(shù)和因數(shù)教學(xué)反思9

  因數(shù)與倍數(shù)屬于數(shù)論中的知識(shí),是比較抽象的,學(xué)生學(xué)習(xí)理解起來(lái)有一定的難度,本節(jié)課是在充分借助學(xué)生已有的知識(shí)經(jīng)驗(yàn)的基礎(chǔ)上切入課題。學(xué)生在此之前已經(jīng)認(rèn)識(shí)了乘法各部分名稱,對(duì)“倍”葉有了初步的認(rèn)識(shí),從而本課由此入手,讓學(xué)生由熟悉的知識(shí)經(jīng)驗(yàn)開(kāi)始,結(jié)合問(wèn)題引發(fā)學(xué)生提升思考并發(fā)現(xiàn)新的`知識(shí)結(jié)構(gòu),體會(huì)到此“因數(shù)”非彼“因數(shù)”,感覺(jué)到“倍”與“倍數(shù)”的不同。

  在探索找一個(gè)數(shù)的因數(shù)的方法時(shí),為了讓學(xué)生更加形象地體會(huì)出“要按照一定的順序去找”才不會(huì)遺漏和重復(fù),本課制作了動(dòng)態(tài)的數(shù)軸圖,通過(guò)演示18的因數(shù)有1、18(閃動(dòng)),2、9(閃動(dòng)),3、6(閃動(dòng))學(xué)生直觀地看到了“順序”,并且在觀察中看到區(qū)間不斷的縮小,到3至6時(shí)觀察區(qū)間,真正體會(huì)到了“找前了”這一學(xué)生難以真正理解的地方。

  本課中還要注意到的就是學(xué)生在匯報(bào)找到了哪些數(shù)的因數(shù)時(shí),教師根據(jù)學(xué)生匯報(bào)所選擇板書(shū)的數(shù)字要有多樣性,如選擇板書(shū)的數(shù)要有奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)等,雖然此時(shí)學(xué)生還不知道這些數(shù)的概念,但這時(shí)給學(xué)生一個(gè)全面的正面印象,有的數(shù)因數(shù)個(gè)數(shù)多,有的少,不是一個(gè)數(shù)越大因數(shù)的個(gè)數(shù)越多……為后面的學(xué)習(xí)做好鋪墊。

倍數(shù)和因數(shù)教學(xué)反思10

  《公倍數(shù)和公因數(shù)》的教學(xué)已接近尾聲,但練習(xí)反饋,部分學(xué)生求兩個(gè)數(shù)的最大公因數(shù)和最小公倍數(shù)錯(cuò)誤百出,細(xì)細(xì)思量,用課本上列舉的方法,真的很難一下子準(zhǔn)確找到最大公因數(shù)或最小公倍數(shù)。如:8和10的最小公倍數(shù),有學(xué)生寫(xiě)80,25和50的最大公因數(shù)有學(xué)生寫(xiě)5!胰(wèn)問(wèn)學(xué)生找兩個(gè)數(shù)公倍數(shù)和最小公倍數(shù),或者兩個(gè)數(shù)的公因數(shù)和最大公因數(shù)的感受,他們都說(shuō)“煩”,“很煩”,“太麻煩了”。

  在了解了學(xué)生的感受以后,我又重新通過(guò)練習(xí)概括出了一些特殊情況:

 。1)兩個(gè)數(shù)是倍數(shù)關(guān)系的,這兩個(gè)數(shù)的最小公倍數(shù)是其中較大的一個(gè)數(shù),最大公因數(shù)是其中較小的一個(gè)數(shù);

 。2)三種最大公因數(shù)是1,最小公倍數(shù)是兩數(shù)乘積的情況(“互質(zhì)數(shù)”這個(gè)概念學(xué)生沒(méi)有學(xué)到):

 、賰蓚(gè)不同的素?cái)?shù);

 、趦蓚(gè)連續(xù)的自然數(shù);

 、1和任何自然數(shù)。

  另外,我又結(jié)合教材后面的“你知道嗎?”,指導(dǎo)了一下用短除法求兩個(gè)數(shù)的最小公倍數(shù)和最大公因數(shù)的`方法。在完成練習(xí)時(shí),讓學(xué)生根據(jù)情況,用自己喜歡的方法來(lái)求兩個(gè)數(shù)的最小公倍數(shù)和最大公因數(shù)。這樣,給學(xué)生結(jié)合題目中兩個(gè)數(shù)的特點(diǎn),自主選擇方法的空間,學(xué)生比較喜歡。

  想來(lái)想去,還是真得很懷念舊教材上的“短除法”。

倍數(shù)和因數(shù)教學(xué)反思11

  通過(guò)今天的學(xué)習(xí),你有什么收獲?

  課后作業(yè) :課后自已或與同學(xué)合作制作一個(gè)含有因數(shù)和倍數(shù)知識(shí)的轉(zhuǎn)盤(pán)。

  教后反思:

  40分鐘的時(shí)間一閃而過(guò),輕松愉悅的課堂氣氛,讓學(xué)生的`學(xué)習(xí)情緒空前高漲,學(xué)生的學(xué)習(xí)熱情,學(xué)習(xí)過(guò)程中數(shù)學(xué)思維的提升,都在這短短的時(shí)間內(nèi)讓我感覺(jué)無(wú)盡的驚喜。

  課堂導(dǎo)入,親切,有效,讓學(xué)生先在腦海中留下“關(guān)系”這種印象,學(xué)生通過(guò)自己閱讀明白誰(shuí)是誰(shuí)的因數(shù),誰(shuí)是誰(shuí)的倍數(shù),然后通過(guò)試一試、練習(xí)、特別是(8是倍數(shù),4是因數(shù)。…… ( ))的辨析,讓學(xué)生明白:在說(shuō)倍數(shù)(或因數(shù))時(shí),必須說(shuō)明誰(shuí)是誰(shuí)的倍數(shù)(或因數(shù))。不能單獨(dú)說(shuō)誰(shuí)是倍數(shù)(或因數(shù))。

  因數(shù)和倍數(shù)不能單獨(dú)存在。

  通過(guò)尋找一個(gè)數(shù)的因數(shù),和一個(gè)數(shù)的倍數(shù),讓學(xué)生通過(guò)多個(gè)實(shí)例找到規(guī)律。

  在教學(xué)中由于過(guò)分依賴課件,致使有的環(huán)節(jié)沒(méi)有深入,沒(méi)有給學(xué)生時(shí)間進(jìn)行

倍數(shù)和因數(shù)教學(xué)反思12

  這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動(dòng)化、合作化和情意化,具體做到了以下幾點(diǎn):

  一、 操作實(shí)踐,舉例內(nèi)化,認(rèn)識(shí)倍數(shù)和因數(shù)我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先根據(jù)一道應(yīng)用題,通過(guò)對(duì)學(xué)生隊(duì)伍的理解讓學(xué)生寫(xiě)出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識(shí)基礎(chǔ)上,從動(dòng)手操作,直觀感知,使概念的`揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義。使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,充分學(xué)習(xí)、利用、挖掘教材,用學(xué)生已有的數(shù)學(xué)知識(shí)引出了新知識(shí),減緩難度,效果較好。

  二、自主探究,意義建構(gòu),找倍數(shù)和因數(shù)整個(gè)教學(xué)過(guò)程中力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動(dòng)的組織者、指導(dǎo)者、參與者。整節(jié)課中,教師始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索,學(xué)習(xí)理解倍數(shù)和因數(shù)的意義,探索并掌握找一個(gè)數(shù)的倍數(shù)的方法,引導(dǎo)學(xué)生在充分的動(dòng)口、動(dòng)手、動(dòng)腦中自主獲取知識(shí)。新課程提出了合作學(xué)習(xí)的學(xué)習(xí)方式,教學(xué)中的多次合作不僅能讓學(xué)生在合作中發(fā)表意見(jiàn),參與討論,獲得知識(shí),發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學(xué)生的合作學(xué)習(xí)能力,初步形成合作與競(jìng)爭(zhēng)的意識(shí)。

倍數(shù)和因數(shù)教學(xué)反思13

  1倍數(shù)和因數(shù)這一內(nèi)容與原來(lái)教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎(chǔ)上認(rèn)識(shí)因數(shù)倍數(shù)。而這里的處理的方法有所不同,在這之前學(xué)生還沒(méi)有學(xué)習(xí)小數(shù)乘除法,只接觸過(guò)整數(shù)乘除法,因此教材通過(guò)用12個(gè)小正方形拼長(zhǎng)方形并寫(xiě)乘法算式來(lái)引入因數(shù)和倍數(shù)。

  2要求學(xué)生用乘法算式表示自己的長(zhǎng)方形的不同擺法,幫助學(xué)生建立起乘法意義的.表象,為后面利用乘法找因數(shù)和倍數(shù)埋下伏筆。

  3重視說(shuō)的訓(xùn)練,要求具體明確。“誰(shuí)是誰(shuí)的倍數(shù),誰(shuí)是誰(shuí)的因數(shù)”當(dāng)學(xué)生說(shuō)到12*1=12時(shí),感到有些拗口,教師即時(shí)鼓勵(lì),體現(xiàn)了數(shù)學(xué)的人文精神和不放過(guò)任何細(xì)節(jié)的作風(fēng)。

  4如何做到既不重復(fù)又不遺漏地找36的因數(shù),對(duì)于剛剛對(duì)倍數(shù)因數(shù)有個(gè)感性認(rèn)識(shí)的學(xué)生來(lái)說(shuō)有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢(shì)。先讓學(xué)生自己獨(dú)立找36的因數(shù),我巡視了一下五分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫(xiě)的算式不按一定的次序進(jìn)行。接著讓學(xué)生在小組里討論兩個(gè)問(wèn)題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過(guò)程中,學(xué)生對(duì)自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這不老師給予有有效得多。

  5練習(xí)形式活潑多樣,即顛覆傳統(tǒng)又扎實(shí)訓(xùn)練。

倍數(shù)和因數(shù)教學(xué)反思14

  《因數(shù)和倍數(shù)》是一節(jié)概念課。教學(xué)時(shí)我首先以拼圖比賽為素材,讓學(xué)生動(dòng)手操作快速把12個(gè)小正方形擺出一個(gè)長(zhǎng)方形,再讓學(xué)生用乘法算式表示出所擺的長(zhǎng)方形,在交流中得到三種不同的擺法和三種不同的乘法算式。借助乘法算式引出因數(shù)和倍數(shù)的意義,使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。 這樣,用學(xué)生已有的數(shù)學(xué)知識(shí)引出了新知識(shí),減緩了難度,這一環(huán)節(jié)的教學(xué),我覺(jué)得還是收到了預(yù)設(shè)的效果。

  能不重復(fù)、不遺漏、有序地找出一個(gè)數(shù)的因數(shù),是本課的教學(xué)難點(diǎn)。在教學(xué)中,我是這樣設(shè)計(jì)的:在根據(jù)1×12=12,2×6=12,3×4=12三個(gè)乘法算式說(shuō)出了誰(shuí)是誰(shuí)的因數(shù)、誰(shuí)是誰(shuí)的倍數(shù)后,我緊接著提問(wèn):12的因數(shù)有哪些?學(xué)生看著黑板上的算式很快地找出12的因數(shù),接著再提問(wèn):你是用什么方式找到12的因數(shù)的?在學(xué)生說(shuō)出方法后,為了讓學(xué)生探索出找一個(gè)因數(shù)的方法,我讓學(xué)生自己找一找15的因數(shù)有哪些。預(yù)設(shè)在匯報(bào)時(shí),能借此解決如何有序、不重復(fù)、不遺漏地找出一個(gè)數(shù)的因數(shù)。但在實(shí)際交流時(shí),學(xué)生的方法出現(xiàn)了兩種意見(jiàn),并且各抒己見(jiàn),因?yàn)?5的因數(shù)只有兩對(duì),無(wú)論怎樣找都不會(huì)遺漏。作為老師,我這時(shí)沒(méi)有把我的意見(jiàn)強(qiáng)加給學(xué)生,而是以男女生比賽的.形式,讓學(xué)生分別找16、18的所有因數(shù)。由于部分學(xué)生運(yùn)用從小到大一對(duì)一對(duì)地找很快找出這兩個(gè)數(shù)的因數(shù),另一部分卻在無(wú)序的情況下,不是重復(fù)就是遺漏,這樣在比較中,不重復(fù)、不遺漏、有序地找出一個(gè)數(shù)的因數(shù)的方法,學(xué)生就能夠很好地接受并掌握。雖然在這個(gè)環(huán)節(jié)上花了比較多的時(shí)間,但對(duì)學(xué)生自主探索、自主學(xué)習(xí)起到了很好的促進(jìn)作用。

  最后引導(dǎo)學(xué)生歸納總結(jié)出一個(gè)數(shù)的因數(shù)的特點(diǎn)時(shí),由于及時(shí)跟上個(gè)性化的語(yǔ)言評(píng)價(jià),激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來(lái)。借助這一學(xué)習(xí)熱情讓學(xué)生自己探索找一個(gè)數(shù)的倍數(shù)的方法,學(xué)生學(xué)習(xí)興趣更濃。不僅探討出從小到大找一個(gè)數(shù)的倍數(shù)而且發(fā)現(xiàn)了倍數(shù)的特點(diǎn)。

  由于本節(jié)課的容量比較大,練習(xí)題設(shè)計(jì)綜合性比較強(qiáng),學(xué)生學(xué)得并不輕松,還存在一小部分學(xué)生沒(méi)有很好地理解因數(shù)與倍數(shù)的關(guān)系。今后,應(yīng)努力改進(jìn)教學(xué)手段,提高學(xué)困生的學(xué)習(xí)效率。

倍數(shù)和因數(shù)教學(xué)反思15

  簡(jiǎn)單的內(nèi)容中蘊(yùn)藏著復(fù)雜的關(guān)系,由于新教材把“整除”的概念去掉,再也不提誰(shuí)被誰(shuí)整除,而改成借助整除模式na=b,直接引出因數(shù)和倍數(shù)的概念,這部分內(nèi)容顯得比較容易了,學(xué)生在學(xué)因數(shù)時(shí),對(duì)于求一個(gè)數(shù)的因數(shù),及理解一個(gè)數(shù)的因數(shù)最小是1,最大因數(shù)是它本身,及一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的,感覺(jué)很清楚,明白。在學(xué)倍數(shù)時(shí),對(duì)求一個(gè)數(shù)的倍數(shù)及理解一個(gè)數(shù)的倍數(shù)中最小的是它本身,沒(méi)有最大的`倍數(shù)也認(rèn)為容易簡(jiǎn)單,但有關(guān)因數(shù)、倍數(shù)的綜合練習(xí)不少學(xué)生開(kāi)始猶豫、混淆。如判斷一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是無(wú)限的,不少學(xué)生判斷為對(duì)。練習(xí)中:18是的倍數(shù),個(gè)別學(xué)生選擇了18、36、54……。針對(duì)這種情況,我調(diào)整了練習(xí),組織學(xué)生研究了以下幾個(gè)問(wèn)題:

  1、寫(xiě)出12的因數(shù)和倍數(shù),寫(xiě)出16的因數(shù)和倍數(shù)。

  2、觀察比較,會(huì)打消列問(wèn)題:一個(gè)數(shù)的因數(shù)和它本身的關(guān)系,

  3、為什么一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的?最小是1,最大是它本身,也就是1和它本身之間的整數(shù)。為什么一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無(wú)限的?最小是它本身,沒(méi)有最大的。

  通過(guò)對(duì)這幾個(gè)問(wèn)題的討論,多數(shù)學(xué)生較好的區(qū)分了一個(gè)數(shù)的因數(shù)和倍數(shù)

【倍數(shù)和因數(shù)教學(xué)反思】相關(guān)文章:

因數(shù)和倍數(shù)教學(xué)反思01-28

《因數(shù)和倍數(shù)》教學(xué)反思02-06

倍數(shù)和因數(shù)教學(xué)反思03-20

因數(shù)和倍數(shù)教學(xué)反思04-02

《倍數(shù)和因數(shù)》教學(xué)反思04-11

因數(shù)和倍數(shù)教學(xué)反思15篇01-29

因數(shù)和倍數(shù)教學(xué)反思(15篇)02-07

倍數(shù)和因數(shù)教學(xué)反思精選15篇03-31

倍數(shù)和因數(shù)教學(xué)反思(15篇)02-28