熟妇人妻中文字幕在线视频_无码人妻精品视频_久久躁夜夜躁狠狠躁_偷碰人妻无码视频

現(xiàn)在位置:范文先生網(wǎng)>心得體會>教學(xué)反思>因數(shù)和倍數(shù)教學(xué)反思

因數(shù)和倍數(shù)教學(xué)反思

時間:2023-10-11 12:27:12 賽賽 教學(xué)反思 我要投稿

因數(shù)和倍數(shù)教學(xué)反思(15篇)(精選25篇)

  身為一位優(yōu)秀的教師,我們要在課堂教學(xué)中快速成長,寫教學(xué)反思可以很好的把我們的教學(xué)記錄下來,那么教學(xué)反思應(yīng)該怎么寫才合適呢?以下是小編精心整理的因數(shù)和倍數(shù)教學(xué)反思,歡迎大家分享。

因數(shù)和倍數(shù)教學(xué)反思(15篇)(精選25篇)

  因數(shù)和倍數(shù)教學(xué)反思 1

  一、“倍數(shù)和因數(shù)”與“倍數(shù)和約數(shù)”這兩種說法一定要分清。

  “倍數(shù)和因數(shù)”與“倍數(shù)和約數(shù)”這兩種說法只是新舊教材的說法不同而已,其實都是表示同一類數(shù)。(即因數(shù)也是約數(shù))

  二、為什么第十教科書上講“倍數(shù)與因數(shù)”的時候不提整除。

  也許我的頭腦還受舊版教材的影響,我認(rèn)為說到“倍數(shù)與因數(shù)”必須要談到整除,因為整除是研究“因數(shù)和倍數(shù)”的條件,學(xué)生在沒有這條件學(xué)習(xí)整除,只要教師的教學(xué)方法稍有不慎,學(xué)生會很快誤入小數(shù)也有因數(shù);但是我在實際的教學(xué)過程中,也體會到了教材中不提整除的好處。而我的心里卻又產(chǎn)生了一個新的疑問,S版教材到底在什么時候于什么數(shù)學(xué)環(huán)境下才提出“整除”這個概念呢?會不會在六年級課改才出現(xiàn)呢?我期待著。

  三、教學(xué)2、5和3的倍數(shù)教師應(yīng)注重“靈活”。

  1、 在教學(xué)2和5的倍數(shù)時,是用同一種方法找出它們倍數(shù)的,學(xué)生很容易掌握,也很快就能把2和5的倍數(shù)說出,并能準(zhǔn)確找出各自的倍數(shù),此時,教師應(yīng)把學(xué)生的思維轉(zhuǎn)到同時是2和5的倍數(shù)怎樣找?接著引導(dǎo)學(xué)生歸納出同時是2和5的倍數(shù)的特征,因此,讓學(xué)生的知識面進(jìn)一步加大。

  2、教學(xué)3的倍數(shù)的特征時,教師首先讓學(xué)生用2和5的倍數(shù)的方法去找3的倍數(shù)的.特征,讓學(xué)生嘗試這種方法是找不到3的倍數(shù)的特征,這時,教師應(yīng)該引導(dǎo)學(xué)生對寫出的3的倍數(shù),要用另一種方法去歸納、總結(jié)3的倍數(shù)的特征,運(yùn)用這一特點(diǎn),教師可以有意識地寫些數(shù)(有3的倍數(shù),也有不是3的倍數(shù),而且是較大的數(shù))讓學(xué)生進(jìn)行判斷,這樣可使學(xué)生對3的倍數(shù)的特征進(jìn)一步得到鞏固;當(dāng)學(xué)生熟練掌握3的倍數(shù)的特征時,教師話峰一轉(zhuǎn),你們能歸納出9的倍數(shù)的特征嗎?學(xué)生在教師這一激發(fā)下,他們的求知欲興趣大增,然后教師啟學(xué)生運(yùn)用找3的倍數(shù)的方法,去找9的倍數(shù)的特征,學(xué)生會輕而易舉地歸納、總結(jié)出9的倍數(shù)的特征。通過找9的倍數(shù)的特征,既鞏固了學(xué)生學(xué)習(xí)3的倍數(shù)的特征,還使學(xué)生的知識面擴(kuò)大,達(dá)到知識的鞏固和遷移的目的。

  3、當(dāng)學(xué)生掌握了2、5和3的倍數(shù)的特征時,教師這時應(yīng)引導(dǎo)學(xué)生進(jìn)一步歸納、總結(jié),把這三個特征綜合,從而得出同時是2、3和5的倍數(shù)的特征。

  通過這樣的教學(xué),讓學(xué)生真正感受到“靈活”兩字,并且能把知識面向縱橫方向發(fā)展。

  因數(shù)和倍數(shù)教學(xué)反思 2

  本單元涉及到的因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)以及第四單元中出現(xiàn)的最大公因數(shù)、最小公倍數(shù)都屬于初等數(shù)論的基本內(nèi)容。是學(xué)生通過四年多數(shù)學(xué)學(xué)習(xí),已經(jīng)掌握了大量的整數(shù)知識,包括整數(shù)的認(rèn)識、整數(shù)四則運(yùn)算的基礎(chǔ)上進(jìn)一步探索整數(shù)的性質(zhì)。

  在教學(xué)中,通過教授學(xué)生認(rèn)識“因數(shù)和倍數(shù)”,并掌握他們的特征:因數(shù)和倍數(shù)不能單獨(dú)存在,并通過觀察比較幾個數(shù)的因數(shù)(或倍數(shù)),知道幾個數(shù)公有的因數(shù)(或倍數(shù))叫做他們的公因數(shù)(或公倍數(shù)),且能夠在幾個數(shù)的因數(shù)(或倍數(shù)還)中找出他們的公因數(shù)(或公倍數(shù))。

  接下來學(xué)習(xí)“2、3、5的倍數(shù)的特征”。發(fā)現(xiàn)2、5、3倍數(shù)的規(guī)律和特點(diǎn)。在此之前還要向?qū)W生教學(xué)什么是“奇數(shù)”什么是“偶數(shù)”,只有掌握了奇數(shù)與偶數(shù),學(xué)習(xí)“2、5的倍數(shù)”的特征就會簡單容易得多。而“3的倍數(shù)”的特征就是引導(dǎo)學(xué)生把各個數(shù)位上的數(shù)相加,的到的數(shù)如果是3的倍數(shù)的話,說明這個數(shù)就是3的倍數(shù)。

  那么,又如何讓學(xué)生學(xué)習(xí)掌握質(zhì)數(shù)與合數(shù)呢?在教學(xué)中,我主要是讓學(xué)生把1~

  20的因數(shù)分別寫出來,并按照奇數(shù)為一列偶數(shù)為一列來讓學(xué)生進(jìn)行觀察比較,然后歸類整理:只有1個因數(shù)的有哪些數(shù)?有兩個因數(shù)的有哪些數(shù)?有3個以上因數(shù)的有哪些數(shù)?學(xué)生分好之后,教師明確:向這樣只有2個因數(shù)的數(shù)叫做質(zhì)數(shù),有2個以上因數(shù)個數(shù)的數(shù)叫合數(shù),1既不是質(zhì)數(shù)也不是合數(shù)。那么自然數(shù)按因數(shù)的個數(shù)來分就可以分為“1、質(zhì)數(shù)、合數(shù)”三大類。

  為了讓學(xué)生鞏固質(zhì)數(shù)與合數(shù),再讓學(xué)生找出1~100以內(nèi)的所有質(zhì)數(shù):先劃掉除了2以外所有2的倍數(shù),再劃掉3的`倍數(shù)、劃掉5的倍數(shù)、最后劃掉7的倍數(shù),所剩下的數(shù)就是質(zhì)數(shù),并且讓學(xué)生數(shù)出、記住100以內(nèi)有25個質(zhì)數(shù)。也可以用同樣的方法去判定100以外的數(shù)是質(zhì)數(shù)還是合數(shù)。

  最后,再學(xué)生講解介紹“分解質(zhì)因數(shù)”,知道用短除法來分解質(zhì)因數(shù)。然后對整個單元所學(xué)的知識進(jìn)行梳理、歸類,讓學(xué)生熟記一些特殊的規(guī)律與數(shù)字,多做一些練習(xí),加強(qiáng)的后進(jìn)生的關(guān)注和輔導(dǎo)。

  因數(shù)和倍數(shù)教學(xué)反思 3

  這是自入職以來第一堂得到李老師指點(diǎn)的課。感覺得到李老師課堂上對學(xué)生信任。也讓我更深一步的體會到,只有學(xué)生自己找出來的規(guī)律,特點(diǎn),才能理解的更透徹,掌握的更牢固,應(yīng)用起來更有效率。平日里,沒有給學(xué)生充分的時間,很多規(guī)律甚至是老師直接告訴學(xué)生的,雖然課堂教學(xué)的速度有了,但是效率并不高,后期教師要花費(fèi)的時間更多。那才是真正的丟了西瓜撿芝麻!下面從幾點(diǎn)來分析本節(jié)課:

  一、優(yōu)點(diǎn)

  課堂掌控力不錯,教師的個人素質(zhì)也不錯。

  二、不足

  1、 是除不盡的。但是課堂上,我卻當(dāng)做了能除盡的。思考出現(xiàn)這個錯誤的原因,是自己對課堂、對學(xué)生的預(yù)設(shè)不足!

  2、26是13和2的倍數(shù),13和2是26的因數(shù)------大家發(fā)現(xiàn)沒有,大的是倍數(shù),小的是因數(shù)!

  我非常清楚,倍數(shù)、因數(shù)是有依存關(guān)系的,而不能單獨(dú)說,但是課堂上卻說出了“大的是倍數(shù),小的是因數(shù)”這樣一句有問題的話。失!

  歸結(jié)原因,還是課堂太想投機(jī)取巧。作為一個引導(dǎo)學(xué)生入門的老師,在知識的門口,真的不能有絲毫差池,更不能為了一時的省事,而為后面的教學(xué)買下禍根!

  三、除了錯誤,還有很多做的復(fù)雜、不到位的地方。

  1、開篇之時,復(fù)習(xí)自然數(shù),是為本節(jié)課作知識鋪墊用的,但是,問題中的“自然數(shù)有什么特點(diǎn)?”卻是一個設(shè)計失敗的問題。已經(jīng)學(xué)到高等數(shù)學(xué)的我,自然之道,自然數(shù)的特點(diǎn)到底有多龐雜!根本不是一兩句話說的清的,但是我卻問了這樣一個問題。

  2、給定12張卡片列除法算式求商時,可以限定時間30秒,看說寫的又多又準(zhǔn)確。也就是說能全員參與的,就單獨(dú)。讓學(xué)生在數(shù)學(xué)作業(yè)紙上寫完后,可以抓條,然后教師可以挑選著在摘錄一些。這樣準(zhǔn)備充分,也可以為后面的'分類打下堅實的基礎(chǔ)。

  3、找個一個數(shù)的因數(shù)時,要先找,在訂正,最后讓學(xué)生說說做法。而后更正練習(xí),接著判斷,說方法。只有清楚的說出了方法,才能保證學(xué)生是真懂了。在這個過程中,還可以鼓勵學(xué)生總結(jié)一些自己的做法,比如用乘法找因數(shù),乘到幾就不乘了。用除法也是,除到幾就不除了。ㄟ@個數(shù)的中間位置)

  4、本節(jié)課最好的量是到會找一個數(shù)的因數(shù)就可以了,接著歸納一個數(shù)因數(shù)的特點(diǎn)部分就拖堂了。內(nèi)容不能很好的在一堂課中充分的展現(xiàn)!

  一堂課教會了我很多,尤其是在教學(xué)方法上,李老師后來的引導(dǎo),讓我清楚的看到了學(xué)生的聰明,學(xué)生的觀察力!要相信學(xué)生------首先要給學(xué)生時間去觀察,去思考,去發(fā)現(xiàn)!否則,學(xué)生的思維永遠(yuǎn)得不到真正的發(fā)展!能力無法得到充分的提升。

  因數(shù)和倍數(shù)教學(xué)反思 4

  一、單元主題圖體驗數(shù)學(xué)化過程。單元主題圖是教材中的一個重要內(nèi)容,它是選擇某一個主題構(gòu)建的一幅情境圖,本單元就出現(xiàn)了“數(shù)的世界”單元主題圖。在教學(xué)中,我是從培養(yǎng)學(xué)生的問題意識出發(fā)來組織教學(xué)的,首先讓學(xué)生獨(dú)立觀察主題圖,通過獨(dú)立思考提出問題;然后讓孩子們通過小組合作,共享學(xué)習(xí)的成果;最后通過解決問題,體驗獲取知識的過程。教學(xué)中學(xué)生不僅很快找到了整數(shù)、小數(shù)、負(fù)數(shù),而且也找到了橙子賣完了用“0”表示,圖中有一個凳子、一張桌子用“1”表示,更多的是學(xué)生提出了很多的數(shù)學(xué)問題,如我有50元可以買多少千克蘋果?學(xué)生真正是在自主學(xué)習(xí)的過程中提出問題、解決問題,體驗“數(shù)學(xué)化”的過程。

  二、數(shù)形結(jié)合實現(xiàn)有意義建構(gòu)。教材中對因數(shù)概念的認(rèn)識,設(shè)計了“用小正方形拼長方形”的操作活動,引導(dǎo)學(xué)生在方格紙上畫一畫,寫出乘法算式,再與同學(xué)進(jìn)行交流。在思考“哪幾種拼法”時,借助“拼小正方形”的活動,使數(shù)與形有機(jī)地結(jié)合,防止學(xué)生進(jìn)行“機(jī)械地學(xué)習(xí)”;學(xué)生對因數(shù)和理解不僅是數(shù)字上的認(rèn)識,而且能與操作活動與圖形描述聯(lián)系起來,促進(jìn)了學(xué)生的有意義建構(gòu),這是一個“先形后數(shù)”的過程,是一個知識抽象的過程。

  三、探索活動關(guān)注解決問題的'策略。學(xué)生在探索活動中,運(yùn)用做記號、列表格、畫示意圖等解決問題的策略來發(fā)現(xiàn)規(guī)律和特征,在探究的過程中,體會觀察、分析、歸納、猜想、驗證等過程,孩子們學(xué)會了思考,初步形成了解決問題的一些基本策略。

  四、困惑:

  1、第一次真正開始教北師大教材,最大的感覺是教學(xué)的空間真的擴(kuò)大了,課堂活躍了,但是同時給學(xué)生進(jìn)行課后輔導(dǎo)的時間也增加了,每節(jié)課從學(xué)生的反饋看來,卻有相當(dāng)一部分的學(xué)生存在各種問題,教材中太缺乏那些能讓他們成功的“基礎(chǔ)性”題目,整個一個單元只有一個練習(xí)一,那六道題目真的能解決問題嗎?能否多給孩子們一些選擇。

  2、不太明白為什么一定要使用“因數(shù)”這個概念,比較“因數(shù)——公因數(shù)——最大公因數(shù)——約分”和“約數(shù)——公約數(shù)——最大公約數(shù)——約分”,總覺得后者容易接受吧。這一改好像我們還得教學(xué)生家長,就真的有學(xué)生家長投訴說“老師啊,你教錯了,那不是因數(shù),是約數(shù)……”,讓人哭笑

  因數(shù)和倍數(shù)教學(xué)反思 5

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。(1)新課標(biāo)教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的'學(xué)習(xí),而是反其道而行之,通過乘法算式來導(dǎo)入新知。(2)“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在?我認(rèn)真研讀教材,通過學(xué)習(xí)了解到以下信息:簽于學(xué)生在前面已經(jīng)具備了大量的區(qū)分整除與有余數(shù)除法的知識基礎(chǔ),對整除的含義已經(jīng)有了比較清楚的認(rèn)識,不出現(xiàn)整除的定義并不會對學(xué)生理解其他概念產(chǎn)生任何影響。因此,本套教材中刪去了“整除”的數(shù)學(xué)化定義,而是借助整除的模式na=b直接引出因數(shù)和倍數(shù)的概念。

  雖然學(xué)生已接觸過整除與有余數(shù)的除法,但我班學(xué)生對“整除”與“除盡”的內(nèi)涵與外延并不清晰。因此在教學(xué)時,補(bǔ)充了兩道判斷題請學(xué)生辨析:

  11÷2=5……1。問:11是2的倍數(shù)嗎?為什么?因為5×0.8=4,所以5和0.8是4的因數(shù),4是5和0.8的倍數(shù),對嗎?為什么?

  特別是第2小題極具價值。價值不僅體現(xiàn)在它幫助學(xué)生通過辨析明確了在研究因數(shù)和倍數(shù)時,我們所說的數(shù)都是指整數(shù)(一般不包括0),及時彌補(bǔ)了未進(jìn)行整除概念教學(xué)的知識缺陷,還通過此題對“因數(shù)”與乘法算式名稱中的“因數(shù)”,倍數(shù)與倍進(jìn)行了對比。

  因數(shù)和倍數(shù)教學(xué)反思 6

  因數(shù)與倍數(shù)屬于數(shù)論中的知識,是比較抽象的,學(xué)生學(xué)習(xí)理解起來有一定的難度,本節(jié)課是在充分借助學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上切入課題。學(xué)生在此之前已經(jīng)認(rèn)識了乘法各部分名稱,對“倍”葉有了初步的認(rèn)識,從而本課由此入手,讓學(xué)生由熟悉的知識經(jīng)驗開始,結(jié)合問題引發(fā)學(xué)生提升思考并發(fā)現(xiàn)新的知識結(jié)構(gòu),體會到此“因數(shù)”非彼“因數(shù)”,感覺到“倍”與“倍數(shù)”的不同。

  在探索找一個數(shù)的'因數(shù)的方法時,為了讓學(xué)生更加形象地體會出“要按照一定的順序去找”才不會遺漏和重復(fù),本課制作了動態(tài)的數(shù)軸圖,通過演示18的因數(shù)有1、18(閃動),2、9(閃動),3、6(閃動)學(xué)生直觀地看到了“順序”,并且在觀察中看到區(qū)間不斷的縮小,到3至6時觀察區(qū)間,真正體會到了“找前了”這一學(xué)生難以真正理解的地方。

  本課中還要注意到的就是學(xué)生在匯報找到了哪些數(shù)的因數(shù)時,教師根據(jù)學(xué)生匯報所選擇板書的數(shù)字要有多樣性,如選擇板書的數(shù)要有奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)等,雖然此時學(xué)生還不知道這些數(shù)的概念,但這時給學(xué)生一個全面的正面印象,有的數(shù)因數(shù)個數(shù)多,有的少,不是一個數(shù)越大因數(shù)的個數(shù)越多……為后面的學(xué)習(xí)做好鋪墊。

  因數(shù)和倍數(shù)教學(xué)反思 7

  北師大版五年級數(shù)學(xué)上、第三單元第一節(jié)《倍數(shù)與因數(shù)》是一節(jié)概念課。關(guān)于“倍數(shù)和因數(shù)”教材中沒有寫出具體的數(shù)學(xué)好處,只是借助乘法算式加以說明,進(jìn)而讓學(xué)生探究尋找一個數(shù)的倍數(shù)和因數(shù)。通過備課,我梳理出這樣一個教學(xué)脈絡(luò):乘法算式——倍數(shù)和因數(shù)——乘法算式——找一個數(shù)的倍數(shù)。從教材本身來看,這部分知識對于五年級學(xué)生而言,沒有什么生活經(jīng)驗,也談不上有什么新興趣,是一節(jié)數(shù)學(xué)味很濃的概念課。如何借助教材這一載體,讓學(xué)生在互動、探究中掌握相應(yīng)的知識,讓乏味變成有味呢?我從以下兩個方面談一點(diǎn)教學(xué)體會。

  一、設(shè)疑遷移,點(diǎn)燃學(xué)習(xí)的火花。

  良好的開頭是成功的一半。我采用一道腦筋急轉(zhuǎn)彎題作為談話引入課題,不僅僅能夠調(diào)動學(xué)生的學(xué)習(xí)興趣,看似不相關(guān)的兩件事例中隱藏著共同點(diǎn):一一對應(yīng)、相互依存。對感知倍數(shù)和因數(shù)進(jìn)行有效的滲透和拓展。

  教學(xué)找一個數(shù)的倍數(shù)時,我依據(jù)學(xué)情,設(shè)計讓學(xué)生獨(dú)立探究尋找2的倍數(shù)、5的倍數(shù),學(xué)生發(fā)現(xiàn)2的倍數(shù)、5的.倍數(shù)寫不完時,通過討論,認(rèn)為用省略號表示比較恰當(dāng),用語文中的一個標(biāo)點(diǎn)符號解決了數(shù)學(xué)問題,自我發(fā)現(xiàn)問題自我解決,學(xué)生從中體驗到解決問題的愉快感和掌握新知的成就感。

  二、滲透學(xué)法,構(gòu)成學(xué)習(xí)的技能。

  由于一個數(shù)倍數(shù)的個數(shù)是無限的,那么如何讓學(xué)生體會“無限”、又如何有序?qū)懗鰜砟?我讓學(xué)生嘗試說出3的倍數(shù)。學(xué)生找倍數(shù)的方法有:依次加3、依次乘1、2、3……、用乘法口訣等等。我組織學(xué)生展開評價,有的學(xué)生認(rèn)為:從小到大依次寫,因為有序,所以覺得好;有的學(xué)生認(rèn)為:用乘法算式寫倍數(shù),既快而且不受前面倍數(shù)的影響,能夠很快地找到第幾個倍數(shù)是多少,因為簡捷正確率高所以覺得好。如此的交流雖然花費(fèi)了“寶貴”的學(xué)習(xí)時光,但是學(xué)生從中能體會到學(xué)習(xí)的方法,發(fā)展了思維,這才是最寶貴的。正所謂沒有一路上的山花爛漫,哪有山頂上的風(fēng)光無限。

  三、學(xué)練結(jié)合,及時把握學(xué)生學(xué)情。

  在學(xué)生通過具體例子初步認(rèn)識了倍數(shù)和因數(shù)以后,通過超多的練習(xí)讓學(xué)生在練習(xí)中感悟,練習(xí)中加深理解概念;在探究出找倍數(shù)的方法以后,及時讓學(xué)生寫出2的倍數(shù)、5的倍數(shù),從而引導(dǎo)學(xué)生發(fā)現(xiàn)一個數(shù)的倍數(shù)的特點(diǎn),并適時進(jìn)行針對性練習(xí),鞏固新知。

  課尾,我設(shè)計了四道達(dá)標(biāo)檢測練習(xí),將整堂課的資料進(jìn)行整理和概括,對易混淆的概念加以比較,對本節(jié)課重要知識點(diǎn)進(jìn)行檢測,及時掌握了學(xué)生的學(xué)情。

  縱觀整節(jié)課,學(xué)生在學(xué)習(xí)過程中自始至終處于主體地位,嘗試練習(xí)、自主探索、解決問題,教師只是加以引導(dǎo),以合作者的身份參與其中。學(xué)生在思維上得到了訓(xùn)練,探究問題、尋求解決問題策略的潛力也會逐步得到提高。

  因數(shù)和倍數(shù)教學(xué)反思 8

  教學(xué)中我發(fā)現(xiàn)倍數(shù)和因數(shù)這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎(chǔ)上認(rèn)識因數(shù)倍數(shù)。而這里的處理的方法有所不同,我在教學(xué)時做了一些改動,讓學(xué)生用12個小正方形擺長方形,然后自己用算式把擺法表示出來。這樣學(xué)生的算是就不局限于乘法,有一部分學(xué)生寫了除法算式。這樣學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。因為現(xiàn)在也有很多學(xué)生學(xué)習(xí)奧賽,所以我從整除的角度也介紹了因數(shù)與倍數(shù)的概念.由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動的接受。如讓學(xué)生思考:你覺得3和12、4和12之間有什么關(guān)系呢?(對乘除法學(xué)生有著相當(dāng)豐富的經(jīng)驗,因此不少學(xué)生能說出倍數(shù)關(guān)系,可能說得不很到位,但那是學(xué)生自己的東西)。當(dāng)學(xué)生認(rèn)識了倍數(shù)之后,我進(jìn)行了設(shè)問:12是3的倍數(shù),那反過來3和12是什么關(guān)系呢?盡管學(xué)生無法回答,但卻給了他思考和接受“因數(shù)”的空間,使學(xué)生體會到12是3的倍數(shù),反過來3就是12的.因數(shù),接下來4和12的關(guān)系,學(xué)生都爭者要回答。

  如何做到既不重復(fù)又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認(rèn)識的學(xué)生來說有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自己獨(dú)立找36的因數(shù),我巡視了一下五分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的次序進(jìn)行。接著讓學(xué)生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這不老師給予有有效得多。

  因數(shù)和倍數(shù)教學(xué)反思 9

  一、教材與知識點(diǎn)的對比與區(qū)別。

  1、對比新版教材知識設(shè)置與傳統(tǒng)教材的區(qū)別。有關(guān)數(shù)論的這部分知識是傳統(tǒng)教學(xué)內(nèi)容但教材在傳承以往優(yōu)秀做法的同時也進(jìn)行了較大幅度的改動。無論是從宏觀方面——內(nèi)容的劃分還是從微觀方面——具體內(nèi)容的設(shè)計上都獨(dú)具匠心!耙驍(shù)與倍數(shù)”的認(rèn)識與原教材有以下兩方面的區(qū)別1新課標(biāo)教材不再提“整除”的概念也不再是從除法算式的觀察中引入本單元的學(xué)習(xí)而是反其道而行之通過乘法算式來導(dǎo)入新知。2“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在教師必須要認(rèn)真研讀教材深入了解編者意圖才能夠正確、靈活駕馭教材。因此我通過學(xué)習(xí)教參了解到以下信息學(xué)生的原有知識基礎(chǔ)是在已經(jīng)能夠區(qū)分整除與余數(shù)除法對整除的含義有比較清楚的認(rèn)識不出現(xiàn)整除的定義并不會對學(xué)生理解其他概念產(chǎn)生任何影響。因此本教材中刪去了“整除”的數(shù)學(xué)化定義。

  2、相似概念的對比。1彼“因數(shù)”非此“因數(shù)”。在同一個乘法算式中兩者都是指乘號兩邊的整數(shù)但前者是相對于“積”而言的與“乘數(shù)”同義可以是小數(shù)。而后者是相對于“倍數(shù)”而言的與以前所說的“約數(shù)”同義說“X是X的因數(shù)”時兩者都只能是整數(shù)。2“倍數(shù)”與“倍”的區(qū)別。“倍”的概念比“倍數(shù)”要廣。我們可以說“1.5是0.3的5倍”但不能說”1.5是0.3的倍數(shù)”。我們在求一個數(shù)的倍數(shù)時運(yùn)用的方法與“求一個數(shù)的幾倍是多少”是相同的只是這里的“幾倍”都是指整數(shù)倍。

  二、教法的運(yùn)用實踐

  1、“因數(shù)與倍數(shù)”概念的數(shù)的應(yīng)用范圍的規(guī)定直接運(yùn)用講述法。對與本知識點(diǎn)的概念是人為規(guī)定的一個范圍因此對于學(xué)生和第一接觸的'印象是沒有什么可以探究和探索的要求而且給學(xué)生一個直觀的感受!耙驍(shù)與倍數(shù)”的運(yùn)用范圍就是在非0自然數(shù)的范疇之內(nèi)與小數(shù)無關(guān)與分?jǐn)?shù)無關(guān)與負(fù)數(shù)無關(guān)雖沒學(xué)但有小部分學(xué)生了解。同時強(qiáng)調(diào)——非0——因為0乘任何數(shù)得00除以任何數(shù)得0。研究它的因數(shù)與倍數(shù)是沒有意義。我得到的經(jīng)驗就是對于數(shù)學(xué)當(dāng)中規(guī)定性的概念用直接講述法讓學(xué)生清晰明確。因此用直接導(dǎo)入法先復(fù)習(xí)自然數(shù)的概念再寫出乘法算式3×4=12說明在這個算式中3和4是12的因數(shù)12是3和4的倍數(shù)。

  2、在進(jìn)行延續(xù)性教學(xué)中可以讓學(xué)生探究怎么樣找一個數(shù)的因數(shù)和倍數(shù)在板書要講究一個格式與對稱性這樣在對學(xué)生發(fā)現(xiàn)倍數(shù)與因數(shù)個數(shù)的有限與無限的對比再就是發(fā)現(xiàn)一個數(shù)的因數(shù)的最小因數(shù)是1最大因數(shù)是其本身。

  因數(shù)和倍數(shù)教學(xué)反思 10

  因數(shù)和倍數(shù)是五年級下冊第二單元的教學(xué)內(nèi)容,由于知識較為抽象,學(xué)生不易理解,因此我在教學(xué)時做到了以下幾點(diǎn):

 。1)密切聯(lián)系生活中的數(shù)學(xué),幫助學(xué)生理解概念間的關(guān)系。

  今天在教學(xué)前,我讓學(xué)生學(xué)說話,就是培養(yǎng)學(xué)生對語言的概括能力和對事物間關(guān)系的理解能力。于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系,從而使學(xué)生更深一步的認(rèn)識倍數(shù)與因數(shù)的關(guān)系,

 。2)改動呈現(xiàn)倍數(shù)和因數(shù)概念的方式。我改變了例題,用杯子翻動的次數(shù)與杯口朝上的次數(shù)之間的關(guān)系,列出乘法算式,初步感知倍數(shù)關(guān)系的`存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學(xué)習(xí)如何找一個數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。這樣不僅溝通了乘法和除法的關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。

 。3)根據(jù)學(xué)生的實際情況,教學(xué)找一個數(shù)的因數(shù)的方法,雖然學(xué)生不能有序地找出來,但是基本能全部找到,再此基礎(chǔ)上讓體會有序找一個數(shù)因數(shù)的辦法學(xué)生容易接受,這樣的設(shè)計由易到難,由淺入深,我覺得能起到鞏固新知,發(fā)展思維的效果。

 。4)設(shè)計有趣游戲活動,擴(kuò)大學(xué)生思維的空間,培養(yǎng)學(xué)生發(fā)散思維的能力。譬如“找朋友”游戲,答案不唯一,學(xué)生思考問題的空間很大,培養(yǎng)了學(xué)生的發(fā)散思維能力。我手里拿了5、17、38幾張數(shù)字卡片,讓學(xué)生判斷自己的學(xué)號數(shù)是哪些數(shù)的倍數(shù),是哪些數(shù)的因數(shù),如果學(xué)生的學(xué)號數(shù)是老師出示卡片的倍數(shù)或因數(shù)就可以站起來。最后問能不能想個辦法讓所有的學(xué)生都站起來。出示地卡片應(yīng)該是幾,找的朋友應(yīng)該是倍數(shù)還是因數(shù)?學(xué)生面對問題積極思考,享受了數(shù)學(xué)思維的快樂。

  因數(shù)和倍數(shù)教學(xué)反思 11

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機(jī),每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。我覺得這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。尤其對因數(shù)和倍數(shù)和是一對相互依存的概念,不能單獨(dú)存在,不是很好理解。我通過捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意和孩子們玩了一個小游戲。用“我和誰是好朋友”這句話來理解相互依存的意思。即“我是誰的好朋友”,“誰是我的好朋友”,而不能說“我是好朋友”。學(xué)生對相互依存理解了,在描述因數(shù)和倍數(shù)的概念時就不會說錯了。對于這節(jié)課的教學(xué),我特別注意下面幾個細(xì)節(jié)來幫助學(xué)生理解因數(shù)和倍數(shù)的概念。

  一是教材雖然不是從過去的整除定義出發(fā),而是通過一個乘法算式來引出因數(shù)和倍數(shù)的概念,但本質(zhì)上任是以“整除”為基礎(chǔ)。所以我上課時特別注意讓學(xué)生明白什么情況下才能討論因數(shù)和倍數(shù)的概念。我舉了一些反例加以說明。

  二是要學(xué)生注意區(qū)分乘法算式中的“因數(shù)”和本單元中的“因數(shù)”的`聯(lián)系和區(qū)別。在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù),而后者是相對于“倍數(shù)”而言的,兩者都只能是整數(shù)。三是要注意區(qū)分“倍數(shù)”與前面學(xué)過的“倍”的聯(lián)系與區(qū)別!氨丁钡母拍畋取氨稊(shù)”要廣?梢哉f“1.5是0.3的5倍”,也可以說“1是3的5倍”,但我們只能說“15是3的倍數(shù)”,卻不能說“1.5是0.3的倍數(shù)”。我在課堂上反復(fù)強(qiáng)調(diào),幫助孩子們認(rèn)真理解辨析,所以學(xué)生一節(jié)課下來對這組概念就理解透徹了,不會模糊了。

  因數(shù)和倍數(shù)教學(xué)反思 12

  本單元注意以下幾個方面的教學(xué),可以促進(jìn)學(xué)生鞏固基礎(chǔ)知識,促進(jìn)學(xué)生發(fā)展基本思維能力。

  1.加強(qiáng)概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念,避免死記硬背。

  本冊新教材采用整數(shù)除法的表示形式教學(xué),便于學(xué)生感知因數(shù)和倍數(shù)的本質(zhì)意義。注意因數(shù)與倍數(shù)的相互依存的關(guān)系;質(zhì)數(shù)、合數(shù)與因數(shù)的關(guān)系;偶數(shù)、奇數(shù)與2的倍數(shù)的關(guān)系等,形成概念鏈,依靠理解促進(jìn)記憶!

  2.注意培養(yǎng)學(xué)生的抽象概括與歸納推理能力

  關(guān)注由從具體到抽象、由特殊到一般的概括、歸納過程,即從個別性知識推出一般性結(jié)論。如質(zhì)數(shù)、合數(shù):寫出1——20各數(shù)的因數(shù)進(jìn)行歸納推理,熟悉20以內(nèi)的質(zhì)數(shù),制作100以內(nèi)質(zhì)數(shù)表。

  3.教給學(xué)生養(yǎng)成“有序?qū)W習(xí)”的良好學(xué)習(xí)習(xí)慣。

  4.加強(qiáng)解決問題的教與學(xué),新教材增加了探索兩數(shù)之和的奇偶性的純數(shù)學(xué)問題,可以根據(jù)兩數(shù)之和的奇偶性的'規(guī)律推理出兩數(shù)之差、兩數(shù)之積的奇偶性,并滲透解決問題的策略。

  5.拓展學(xué)生的知識面。如探究既是2的倍數(shù)又是5的倍數(shù)特征;4的倍數(shù)特征;6的倍數(shù)特征等,開拓視野,發(fā)展思維!

  因數(shù)和倍數(shù)教學(xué)反思 13

  新教材在引入倍數(shù)和因數(shù)概念時與以往的老教材有所不同,比如在認(rèn)識“因數(shù)、倍數(shù)”時,不再運(yùn)用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,我從以下三個方面談一點(diǎn)教學(xué)體會。

  一、設(shè)疑遷移,點(diǎn)燃學(xué)習(xí)的火花

  良好的開頭是成功的一半。我采用“拼拼擺擺”作為談話進(jìn)入正題,不僅可以調(diào)動學(xué)生的學(xué)習(xí)興趣,一一對應(yīng)、相互依存。對感知倍數(shù)和因數(shù)進(jìn)行有效的滲透和拓展。

  教學(xué)找一個數(shù)的倍數(shù)時,我依據(jù)學(xué)情,設(shè)計讓學(xué)生獨(dú)立探究尋找3的倍數(shù)。我設(shè)計了嘗試練——引出沖突——討論探究這么一個學(xué)習(xí)環(huán)節(jié)。學(xué)生帶著“又對又好”的要求開始自主練習(xí),學(xué)生找倍數(shù)的方法有:依次加3、依次乘1、2、3……、用乘法口訣等等。在學(xué)生充分討論的基礎(chǔ)上,我組織學(xué)生圍繞“好”展開評價,有的學(xué)生認(rèn)為:從小到大依次寫,因為有序,所以覺得好;有的學(xué)生認(rèn)為:用乘法算式寫倍數(shù),既快而且不受前面倍數(shù)的影響,可以很快地找到第幾個倍數(shù)是多少,學(xué)生發(fā)現(xiàn)3的倍數(shù)寫不完時都面面相覷,左顧右盼。學(xué)生通過討論,認(rèn)為用省略號表示比較恰當(dāng)。用語文中的一個標(biāo)點(diǎn)符號解決了數(shù)學(xué)問題,自己發(fā)現(xiàn)問題自己解決,學(xué)生從中體驗到解決問題的愉快感和掌握新知的成就感。

  二、操作實踐,舉例內(nèi)化,認(rèn)識倍數(shù)和因數(shù)

  我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動手操作把12個小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助多媒體出示乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作,直觀感知,讓學(xué)生自主體驗數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義.使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。 這樣,充分學(xué)習(xí)、利用、挖掘教材,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩難度,效果較好。

  三、注重細(xì)節(jié),注重學(xué)生的習(xí)慣培養(yǎng)

  學(xué)生在找一個數(shù)的因數(shù)時最常犯的`錯誤就是漏找,即找不全。學(xué)生怎樣按一定順序找全因數(shù)這也正是本課教學(xué)的難點(diǎn)。所以在學(xué)生交流匯報時,我結(jié)合學(xué)生所敘思維過程,相機(jī)引導(dǎo)并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。

  這樣的板書幫助學(xué)生有序的思考,形成明晰的解題思路的作用是毋庸質(zhì)疑的。教師能像教材中那樣一頭一尾地成對板書因數(shù),這樣既不容易寫漏,而且學(xué)生么隨著流程的進(jìn)行,勢必會感受到越往下找,區(qū)間越小,需要考慮的數(shù)也就越少。當(dāng)找到兩個相鄰的自然數(shù)時,他們自然就不會再找下去了。書寫格式這一細(xì)節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點(diǎn),我相信像這樣潤物無聲的細(xì)節(jié),無論于學(xué)生、于課堂都是有利無弊的

  由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動地接受。教學(xué)之前我知道這節(jié)課時間會很緊,所以在備課的時候,我認(rèn)真鉆研了教材,仔細(xì)分析了教案,看哪些地方時間安排的可以少一些,所以我在總結(jié)倍數(shù)的特征,這一環(huán)節(jié)里縮短出示時間,直接以3個小問題出示,實際效果我認(rèn)為是比較理想的。課上還應(yīng)該及時運(yùn)用多媒體將學(xué)生找的因數(shù)呈現(xiàn)出來,引導(dǎo)學(xué)生歸納總結(jié)自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。應(yīng)該及時跟上個性化的語言評價,激活學(xué)生的情感,將學(xué)生的思維不斷活躍起來。

  因數(shù)和倍數(shù)教學(xué)反思 14

  本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一定的整數(shù)知識的基礎(chǔ)上進(jìn)行教學(xué)的。

  課堂中,我首先讓學(xué)生理解分類標(biāo)準(zhǔn),明確因數(shù)和倍數(shù)的含義。在例1教學(xué)中,首先根據(jù)不同的除法算式讓學(xué)生進(jìn)行分類,同時思考其標(biāo)準(zhǔn)依據(jù)是什么。通過學(xué)生的獨(dú)立思考和小組交流學(xué)生得出:第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學(xué)生在爭論與交流中達(dá)成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強(qiáng)調(diào)的是對于因數(shù)和倍數(shù)的`含義要符合兩個條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個條件才能說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。

  其次,厘清概念倍數(shù)和幾倍,注重強(qiáng)調(diào)倍數(shù)和因數(shù)的相互依存性。在教學(xué)中可以直接告訴學(xué)生因數(shù)和倍數(shù)都不能單獨(dú)存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。對于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進(jìn)行研究,而幾倍既可以在整數(shù)范圍內(nèi),也可以在小數(shù)范圍內(nèi)進(jìn)行研究,它的研究范圍較之倍數(shù)范圍大一些。

  本節(jié)課的不足之處:

  1.練習(xí)設(shè)計容量少了一些,導(dǎo)致課堂有剩余時間。

  2.對因數(shù)和倍數(shù)的含義還應(yīng)該進(jìn)行歸納總結(jié)上升到用字母來表示。

  因數(shù)和倍數(shù)教學(xué)反思 15

  一.數(shù)形結(jié)合減緩難度

  《因數(shù)和倍數(shù)》這一內(nèi)容,學(xué)生初次接觸。在導(dǎo)入中我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。讓學(xué)生把12個小正方形擺成不同的長方形,并用不同的乘法算式來表示自己腦中所想,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣,學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩難度,效果較好。

  二.自主探究,合作學(xué)習(xí)

  放手讓每個同學(xué)找出36的所有因數(shù),學(xué)生圍繞教師提出的“怎樣才能找全36的所有因數(shù)呢?”這個問題,去尋找36的所有因數(shù)。由于個人經(jīng)驗和思維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的'答案中歸納出求一個數(shù)的因數(shù)的思考方法。既留足了自主探究的空間,又在方法上有所引導(dǎo),避免了學(xué)生的盲目猜測。通過展示、比較不同的答案,發(fā)現(xiàn)了按順序一對一對找的好方法,突出了有序思考的重要性,有效地突破了教學(xué)的難點(diǎn)。

  三.在游戲中體驗學(xué)習(xí)的快樂

  在最后的環(huán)節(jié)中我設(shè)計了“找朋友”的游戲,層次是先找因數(shù)朋友,再找倍數(shù)朋友,最后為兩個數(shù)找到共同的朋友。

  這堂課我還存在許多不足,我的教學(xué)理念很清楚,課堂上學(xué)生是主體教師只是合作者。但在教學(xué)過程中許多地方還是不由自主的說得過多,給學(xué)生的自主探索空間太少。

  因數(shù)和倍數(shù)教學(xué)反思 16

  這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點(diǎn):

  一、 操作實踐,舉例內(nèi)化,認(rèn)識倍數(shù)和因數(shù)我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先根據(jù)一道應(yīng)用題,通過對學(xué)生隊伍的理解讓學(xué)生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義。使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,充分學(xué)習(xí)、利用、挖掘教材,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩難度,效果較好。

  二、自主探究,意義建構(gòu),找倍數(shù)和因數(shù)整個教學(xué)過程中力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動的組織者、指導(dǎo)者、參與者。整節(jié)課中,教師始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索,學(xué)習(xí)理解倍數(shù)和因數(shù)的`意義,探索并掌握找一個數(shù)的倍數(shù)的方法,引導(dǎo)學(xué)生在充分的動口、動手、動腦中自主獲取知識。新課程提出了合作學(xué)習(xí)的學(xué)習(xí)方式,教學(xué)中的多次合作不僅能讓學(xué)生在合作中發(fā)表意見,參與討論,獲得知識,發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學(xué)生的合作學(xué)習(xí)能力,初步形成合作與競爭的意識。

  因數(shù)和倍數(shù)教學(xué)反思 17

  《倍數(shù)和因數(shù)》是四下第九單元的內(nèi)容。教學(xué)時,我首先讓學(xué)生動手操作把12個小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出倍數(shù)和因數(shù)的意義。這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作到直觀感知,讓學(xué)生自主體驗數(shù)與形的結(jié)合,進(jìn)而形成倍數(shù)與因數(shù)的意義,使學(xué)生初步建立了“倍數(shù)與因數(shù)”的概念。根據(jù)算式直接說明誰是誰的倍數(shù),誰是誰的因數(shù),學(xué)生很容易接受,再通過學(xué)生自己舉例和交流,進(jìn)一步加深對倍數(shù)和因數(shù)意義的`理解。從學(xué)生的反應(yīng)和課堂氣氛來看,教學(xué)效果還是不錯的。

  能不重復(fù)、不遺漏、有序地找出一個數(shù)的倍數(shù)和因數(shù),是本課的教學(xué)難點(diǎn)。教學(xué)時,我先讓學(xué)生自己找3的倍數(shù),匯報交流后通過對比(一種是沒有順序,一種是有序的)得出如何有序地找一個數(shù)的倍數(shù)的方法。對于倍數(shù),學(xué)生在以前的學(xué)習(xí)中已有所接觸,所以學(xué)生很容易學(xué),用的時間也比較少。

  對于找一個數(shù)的因數(shù),學(xué)生最容易犯的錯誤就是漏找,即找不全。所以在學(xué)生交流匯報時,我結(jié)合學(xué)生所敘思維過程,相機(jī)引導(dǎo)并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9,36÷6=6。這樣的板書幫助學(xué)生有序的思考,形成明晰的解題思路。學(xué)生通過觀察,發(fā)現(xiàn)當(dāng)找到的兩個自然數(shù)非常接近時,就不需要再找下去了。書寫格式這一細(xì)節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點(diǎn)。

  因數(shù)和倍數(shù)教學(xué)反思 18

  聽了陶老師執(zhí)教的《倍數(shù)和因數(shù)》一課,我有以下幾點(diǎn)體會。

  1、倍數(shù)和因數(shù)是一個比較抽象的知識。在教學(xué)中,陶老師讓學(xué)生擺出圖形,通過乘法算式來認(rèn)識倍數(shù)和因數(shù)。用12個同樣大的正方形拼一個長方形,觀察長方形的擺法,再用乘法算式表示出來,組織交流出現(xiàn)積是12的不同的乘法算式。即:4×3=122×6=121×12=12。根據(jù)乘法算式,從學(xué)生已有知識出發(fā),學(xué)習(xí)倍數(shù)和因數(shù),初步體會其意義。在得出這些乘法算式以后,先根據(jù)4×3=12說明12是3和4的倍數(shù),3和4都是12的因數(shù),使學(xué)生初步體會倍數(shù)和因數(shù)的含義。在學(xué)生初步理解的基礎(chǔ)上,再讓他們舉一反三,結(jié)合另兩道乘法算式說一說。在這一個環(huán)節(jié)中,陶老師還設(shè)計了讓學(xué)生根據(jù)除法算式說出誰是誰的因數(shù),誰是誰的倍數(shù),讓學(xué)生明白除法算式中也能找出倍數(shù)和因數(shù)。最后,陶老師出示了五個數(shù),讓學(xué)生從中找找,說說誰是誰的倍數(shù),誰是誰的因數(shù)。這一設(shè)計既是對上面內(nèi)容的提升,又引出了下面的內(nèi)容。

  2、一個數(shù)的因數(shù)和倍數(shù)的`尋找,課本上是安排先教學(xué)倍數(shù)后教學(xué)因數(shù)的。陶老師在教學(xué)時,打破了教材的安排,首先教學(xué)找一個數(shù)的因數(shù)。我覺得這樣做比較好,找因數(shù)的方法比較難一點(diǎn)點(diǎn),它需要學(xué)生的逆向思維,所以陶老師一步一步的引導(dǎo)著學(xué)生,扶放結(jié)合地讓學(xué)生去探索找一個數(shù)因數(shù)的方法,隨后再去教學(xué)找一個數(shù)的倍數(shù),學(xué)生就容易找準(zhǔn)了。這樣安排既承接了上面的內(nèi)容,又為學(xué)生一個數(shù)的倍數(shù)提供了方法。

  因數(shù)和倍數(shù)教學(xué)反思 19

  本節(jié)課是第二單元的第一課時,第二單元的教學(xué)內(nèi)容較為抽象,很難結(jié)合生活實例或具體情境來進(jìn)行教學(xué),學(xué)生理解起來有一定的難度。加強(qiáng)對概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念,避免死記硬背。還有要引導(dǎo)學(xué)生用聯(lián)系的觀點(diǎn)去掌握這些知識,而不是機(jī)械地記憶一堆支離破碎、毫無關(guān)聯(lián)的概念和結(jié)論。

  今天這節(jié)課的教學(xué)的倍數(shù)和因數(shù)是講述兩個數(shù)之間的一種相互依存關(guān)系,于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)對數(shù)學(xué)的興趣,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系。然后我讓學(xué)生根據(jù)情境列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學(xué)習(xí)如何找一個數(shù)的'倍數(shù)奠定了良好的基礎(chǔ)。同時,我還出示了一個除法的算式,讓學(xué)生來找找倍數(shù)和因數(shù)的關(guān)系,這樣不僅溝通了乘法和除法的關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。

  找出一個數(shù)的因數(shù)要做到不重復(fù)和不遺漏,有些學(xué)生還不能找全,沒有掌握方法,我在今后的教學(xué)中還要注意對學(xué)困生的輔導(dǎo)。

  因數(shù)和倍數(shù)教學(xué)反思 20

  這個單元課時數(shù)比較多,對于學(xué)生數(shù)感的要求比較高,對于學(xué)生觀察能力,比較能力,推理能力的培養(yǎng)是個很好的訓(xùn)練。通過一個單元的教學(xué),發(fā)現(xiàn)學(xué)生在以下知識點(diǎn)的學(xué)習(xí)和掌握上還存在一些問題:

  1、最大公因數(shù)和最小公倍數(shù)

  教學(xué)中,我讓學(xué)生經(jīng)歷了三種方法:法一是先找各數(shù)的因數(shù)(或倍數(shù)),再找兩個數(shù)的公因數(shù)(或公倍數(shù)),最后再找最大公因數(shù)和最小公倍數(shù);二是介紹短除法;三是對于特殊關(guān)系的數(shù)(倍數(shù)關(guān)系或互質(zhì)數(shù))直接根據(jù)規(guī)律寫結(jié)果。根據(jù)復(fù)習(xí)和練習(xí)反饋,發(fā)現(xiàn)學(xué)生對數(shù)的感覺比較欠缺,特殊關(guān)系的數(shù)不容易看出來,且兩個概念有時還會出現(xiàn)混淆情況,也就是對因數(shù)和倍數(shù)的理解不夠透徹與深刻。如果學(xué)生對找最大公因數(shù)和最小公倍數(shù)學(xué)不扎實,將直接影響到后面的約分和通分。所以我準(zhǔn)備在平時每節(jié)課都有三到五個訓(xùn)練,并進(jìn)行專項過關(guān)。在應(yīng)用這個知識解決實際問題時,有少數(shù)后進(jìn)生比較難以理解,需要輔助圖形來分析,也需要一個時間的積淀過程。

  2、質(zhì)數(shù)合數(shù)與奇數(shù)偶數(shù)

  這四個概念按照兩個不同的標(biāo)準(zhǔn)分類所得。學(xué)生在分類思考時對概念的理解比較清晰,但混同在一起容易出現(xiàn)概念的交叉,如2既是質(zhì)數(shù)又是偶數(shù),9既是合數(shù)又是奇數(shù)。

  3、235倍數(shù)的特征

  如果單獨(dú)讓學(xué)生去說去判斷一個數(shù)是不是235的倍數(shù),學(xué)生比較清楚,但在靈活應(yīng)用時就比較遲鈍,特別是用短除法尋找公因數(shù)時,不能很快的進(jìn)行反應(yīng),數(shù)的'感覺不佳。

  以上是本單元學(xué)生在學(xué)習(xí)過程中的主要障礙,數(shù)感的培養(yǎng)需要一個過程,而概念的理解加深還需要平時不斷的訓(xùn)練。多給學(xué)生一點(diǎn)耐心,再堅持一份恒心,相信學(xué)生們會有提高,會有改變。

  因數(shù)和倍數(shù)教學(xué)反思 21

  在本課教學(xué)時,先讓學(xué)生用12個同樣大小的正方形,擺成一個長方形,并用乘法算式把自己的擺法表示出來,讓學(xué)生動手操作、合作交流,怎樣擺,有哪些不同的擺法?先讓學(xué)生小組交流、操作后,以其中的一道乘法算式為例,引出倍數(shù)和因數(shù)的概念。

  這樣的安排,體現(xiàn)了以學(xué)生為本,用學(xué)生已有的經(jīng)驗和動手操作能力,很好的調(diào)動了學(xué)生學(xué)習(xí)的積極性和主動性。一方面讓學(xué)生樂于接受,是學(xué)生在展示自己的想法,老師僅僅是組織者;另一方面培養(yǎng)了學(xué)生善于觀察和傾聽他人的想法的良好學(xué)習(xí)態(tài)度。對于找一個數(shù)的倍數(shù)比找一個數(shù)的因數(shù)的方法要容易些,所以我先教學(xué)如何找一個數(shù)的倍數(shù),在學(xué)生學(xué)會了找一個數(shù)的倍數(shù)的方法基礎(chǔ)上,再教學(xué)如何找一個數(shù)的因數(shù),這樣教學(xué)便于學(xué)生自己探索并總結(jié)歸納出找一個數(shù)的因數(shù)的方法,體現(xiàn)了讓學(xué)生自主學(xué)習(xí)。

  在處理本節(jié)課的難點(diǎn)找36的因數(shù)時,我原來是放手讓學(xué)生自己去找的。結(jié)果試上時很多學(xué)生沒有頭緒,無從下手。時間倒是花去不少,可方法卻沒有多少可行的。我靜下心來尋找原因,找一個的.因數(shù)是學(xué)生以前從未遇到過的問題,自然不知道如何解決。再加上找一個數(shù)的因數(shù)比找一個數(shù)的倍數(shù)要難得多,我這樣貿(mào)然地放手,學(xué)生當(dāng)然不知所措了。后來,在處理找36的因數(shù)時,如何做到既不重復(fù)又不遺漏地找36的因數(shù)?我認(rèn)為要對學(xué)生扶放得當(dāng),要有適當(dāng)?shù)胤觯瑢W(xué)生才能探索出方法。于是,我讓學(xué)生回憶剛才的幾道乘法算式,然后把找一個數(shù)的倍數(shù)的方法有效的遷移到找一個數(shù)的因數(shù)中。果然學(xué)生知道了該如何思考后,效果好了很多。

  因數(shù)和倍數(shù)教學(xué)反思 22

  開學(xué)后上第一節(jié)課年級組教研課,挺有壓力的。畢竟放了這么久的假,感覺有點(diǎn)不習(xí)慣,好象字都寫不穩(wěn)一樣。還好,上完課后感覺還可以。

  因數(shù)和倍數(shù)是一堂概念課。老教材是先建立整除的概念,在整除的基礎(chǔ)上教學(xué)因數(shù)與倍數(shù)的,而新教材沒有提到整除。教學(xué)前,我是先讓學(xué)生進(jìn)行了預(yù)習(xí),開課伊始,就揭示課題,讓學(xué)生談自己對因數(shù)與倍數(shù)的理解。學(xué)生結(jié)合一個乘法算“3×4=12”入手,介紹因數(shù)與倍數(shù)概念,這樣有助于更好理解,也能節(jié)約很多時間。學(xué)生的學(xué)習(xí)興趣被激發(fā)了、思維被調(diào)動起來了,主動參與到了知識的學(xué)習(xí)中去了。

  能不重復(fù)、不遺漏找出一個數(shù)的因數(shù)是本課的難點(diǎn),絕大部分學(xué)生都能仿照找12的因數(shù)去找,孩子都能一對一對的找,可遺漏的多,在這里我強(qiáng)調(diào)按順序找,也就是從“1”開始,依次找,這樣效果很好。

  為了得出因數(shù)的特點(diǎn),我出了“24的因數(shù),36的因數(shù),18的因數(shù)”,并認(rèn)真觀察這些因數(shù)看有什么發(fā)現(xiàn),由于時間不夠,我只要求孩子從因數(shù)的個數(shù),最小,最大的`因數(shù)考慮,沒有對質(zhì)數(shù),合數(shù),公因數(shù)進(jìn)行滲透。找一個數(shù)的倍數(shù)因為方法比較易于掌握,沒有過多的練習(xí),二是激發(fā)他們想象一個數(shù)的倍數(shù)有什么特點(diǎn)。

  針對這節(jié)課,課后老師們就這堂課認(rèn)真評析,真誠的說出自己的觀點(diǎn),特別就知識的生長點(diǎn)、教學(xué)的重難點(diǎn)展開了討論,特別是找一個數(shù)的因數(shù),應(yīng)注重方法的指導(dǎo)。由此,我們數(shù)學(xué)課堂教學(xué)應(yīng)注意一下幾點(diǎn):知識的滲透點(diǎn)、練習(xí)發(fā)展點(diǎn)、層次切入點(diǎn)、設(shè)計巧妙點(diǎn)、教法多樣點(diǎn)、語言動聽點(diǎn)、管理到位點(diǎn)、應(yīng)變靈活點(diǎn)。

  這幾點(diǎn)既是目標(biāo)也是方向,相信我們在新的一學(xué)期,團(tuán)結(jié)協(xié)作,勤奮務(wù)實,努力朝著目標(biāo)前進(jìn)。

  因數(shù)和倍數(shù)教學(xué)反思 23

  《倍數(shù)和因數(shù)》這一章是人教版五年級下冊的內(nèi)容。由于這一單元概念較多,學(xué)生要掌握的知識較多,所以掌握起來較難。我上的這節(jié)復(fù)習(xí)課分以下四部分。

  1、先從自然數(shù)入手,由自然數(shù)的概念讓學(xué)生總結(jié)自然數(shù)的個數(shù)是無限的,最小的自然數(shù)是0,沒有最大的自然數(shù)。又根據(jù)生活實際試著讓學(xué)生把自然數(shù)分成奇數(shù)和偶數(shù)。點(diǎn)名說出什么數(shù)是奇數(shù),什么數(shù)是偶數(shù),是根據(jù)什么分的,這樣有一種水到渠成的感覺。

  2、由偶數(shù)都是2的'倍數(shù),復(fù)習(xí)2的倍數(shù)的特征,5的倍數(shù)的特征,3的倍數(shù)的特征。學(xué)生邊復(fù)習(xí)老師邊板書,由于大家共同協(xié)作,很快找出一個數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù)。然后總結(jié)同時能被2、3整除的數(shù)就是6的倍數(shù),引出倍數(shù)和因數(shù)的意義。讓學(xué)生隨便說一個算式,說明誰是誰的倍數(shù),誰是誰的因數(shù)”,學(xué)生列舉乘法或除法算式,準(zhǔn)確表達(dá)倍數(shù)與因數(shù)的關(guān)系,加深了學(xué)生對倍數(shù)與因數(shù)相互依存關(guān)系的理解和認(rèn)識。

  3、隨便給出一個數(shù)找出它的所有因數(shù),得出一個數(shù)最小的因數(shù)是1,最大的因數(shù)是它身。根據(jù)因數(shù)的個數(shù)把自然數(shù)分成質(zhì)數(shù)、合數(shù)和1。復(fù)習(xí)什么是質(zhì)數(shù),什么是合數(shù)。最小的質(zhì)數(shù)是幾,最小的合數(shù)是幾。20以內(nèi)的質(zhì)數(shù)。為什么1既不是質(zhì)數(shù)也不是合數(shù)。這是根據(jù)什么分類的呢?任意給出一個數(shù)判斷是質(zhì)數(shù)還是合數(shù),若是合數(shù)讓學(xué)生分解質(zhì)因數(shù)。先說分解質(zhì)因數(shù)的方法,然后點(diǎn)名學(xué)生板演,教師巡視。指出錯誤。

  4、帶領(lǐng)學(xué)生一起做練習(xí),讓學(xué)生邊做邊說思路。這節(jié)課比較好的地方是條理清晰、內(nèi)容全面;練習(xí)的設(shè)計不僅緊緊圍繞教學(xué)重點(diǎn),而且注意到了練習(xí)的層次性、趣味性。

  不足之處是我缺乏個性化的語言評價激活學(xué)生的情感,以后需多努力。

  因數(shù)和倍數(shù)教學(xué)反思 24

  本節(jié)課的內(nèi)容涉及的概念非常多,即抽象又容易混淆,如何使學(xué)生更加容易理解這些概念,理清概念之間的相互聯(lián)系,構(gòu)建知識之間的網(wǎng)絡(luò)體系是本節(jié)課教學(xué)的重難點(diǎn)。

  成功之處:

  1.構(gòu)建知識網(wǎng)絡(luò)體系,理清知識之間的相互聯(lián)系。在教學(xué)中,我首先通過一個聯(lián)想接龍的游戲調(diào)動學(xué)生學(xué)習(xí)的興趣,讓學(xué)生利用因數(shù)和倍數(shù)單元的`知識來描述數(shù)字2,學(xué)生非常容易想到2是最小的質(zhì)數(shù)、2是偶數(shù)、2的因數(shù)是1和2、2的倍數(shù)有2,4,6…、2的倍數(shù)特征是個位是0、2、4、6、8的數(shù),通過學(xué)生的回答教師及時抓住其中的關(guān)鍵詞引出本單元的所有概念:因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)、奇數(shù)、偶數(shù)、公因數(shù)、最大公因數(shù)、公倍數(shù)、最小公倍數(shù)、2、3、5的倍數(shù)的特征。如何整理使這些凌亂的概念變得更加簡潔、更加有序、更加能體現(xiàn)知識之間的聯(lián)系呢?通過學(xué)生課前的整理發(fā)揮小組的合作交流作用,在相互交流中,學(xué)生相互學(xué)習(xí)、相互借鑒,逐漸對這些概念的聯(lián)系有了更進(jìn)一步的認(rèn)識,然后通過選取幾名同學(xué)的作品進(jìn)行展評,最后教師和學(xué)生共同進(jìn)行整理和調(diào)整,最終來完善知識之間的網(wǎng)絡(luò)體系。

  2.在練習(xí)中進(jìn)一步對概念進(jìn)行有針對性的復(fù)習(xí)。在練習(xí)環(huán)節(jié)中,我根據(jù)這些概念設(shè)計了一些相應(yīng)的練習(xí)。目的是以練習(xí)促復(fù)習(xí),在練習(xí)中更好的體會這些概念的具體含義,加深學(xué)生對概念的理解和掌握。

  不足之處:

  個別學(xué)生在展評中不會去評價,只是從設(shè)計的美觀上去思考,而沒有從體現(xiàn)知識之間的聯(lián)系上去進(jìn)行說明。

  再教設(shè)計:

  抓住數(shù)學(xué)知識的本質(zhì),美觀的整理形式只是一些外在的,并不是重點(diǎn)。

  因數(shù)和倍數(shù)教學(xué)反思 25

  因數(shù)和倍數(shù)是蘇教版五年級下冊第三單元的內(nèi)容。這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎(chǔ)上認(rèn)識因數(shù)倍數(shù)。而教材是通過用12個小正方形拼長方形并寫乘法算式來引入因數(shù)和倍數(shù)。我在教學(xué)時做了一些下的改動,例題從12個相同的正方形拼長方形開始教學(xué),學(xué)生對這個活動已經(jīng)很熟悉,幾乎人人都知道有不同的拼法,都能順利地拼出三種不同的長方形。因此,我要求不用12個正方形拼,而是在腦子里“想像拼”,不能想象的就在本子上“畫拼”,“拼”好后,我也要求只用一個乘法算式表示你的拼法,這樣不僅節(jié)省了不少時間,更主要的是我覺得這樣的操作活動,雖然看起來不熱鬧,但學(xué)生的學(xué)習(xí)興趣被激發(fā)了、思維被調(diào)動起來了,主動參與到了知識的學(xué)習(xí)中去了。

  能不重復(fù)、不遺漏,有序地找出一個數(shù)的因數(shù),是本課的教學(xué)難點(diǎn)。在教學(xué)中,我是這樣設(shè)計的:在根據(jù)1×12=12,2×6=12,3×4=12三個乘法算式說出了誰是誰的因數(shù)、誰是誰的倍數(shù)后,教師緊接著提問:12的因數(shù)有哪些?學(xué)生看著黑板上的算式很快可找出12的因數(shù),接著再提問:你是怎么看出來的?根據(jù)一個乘法算式可以得到12的幾個因數(shù)?在學(xué)生回答之后,我接著請同學(xué)們用剛才的方法自己找一找36的因數(shù)有哪些。在匯報時,重點(diǎn)解決如何有序、不重復(fù)、不遺漏地找出一個數(shù)的因數(shù)。雖然這樣的教學(xué)設(shè)計,看起來學(xué)生的主動探索過程好像削弱了好多,但根據(jù)試上這課時的情況看,這樣的'設(shè)計比直接讓學(xué)生自主探索36的因數(shù)有哪些學(xué)習(xí)效果要好一些。直接探索36的因數(shù)有哪些,放得太開,學(xué)生無從下手,暴露出了許多問題,有的不知道該如何找因數(shù),有的沒有找全,而學(xué)生在教師的引導(dǎo)下,發(fā)現(xiàn)了找一個數(shù)因數(shù)的方法后接著去找36的因數(shù),那么他所關(guān)注的是如何有序地找出一個數(shù)的因數(shù),這樣的思考更有針對性,目標(biāo)也更明確,對知識的掌握也能做得更好。

【因數(shù)和倍數(shù)教學(xué)反思】相關(guān)文章:

《因數(shù)和倍數(shù)》教學(xué)反思02-06

《倍數(shù)和因數(shù)》教學(xué)反思04-11

倍數(shù)和因數(shù)教學(xué)反思01-16

因數(shù)和倍數(shù)教學(xué)反思01-28

倍數(shù)和因數(shù)教學(xué)反思精選15篇03-31

《倍數(shù)和因數(shù)》教學(xué)反思15篇04-11

因數(shù)和倍數(shù)教學(xué)反思15篇01-29

倍數(shù)和因數(shù)教學(xué)反思15篇02-28

倍數(shù)和因數(shù)教學(xué)反思(15篇)02-28